题名

Alpha Mistake of Taguchi's Robust Design with L12 and L32 Arrays for STB Type QCH by Simulation

并列篇名

利用模擬方法探討田口方法L12與L32直交表望小型品質特性值之型I錯誤的機率

作者

雷方奕(Abbas Al-Refaie);李明賢(Ming-Hsien Li)

关键词

型I錯誤的機率 ; 田口方法 ; 望小型 ; 模擬 ; alpha mistake ; Taguchi method ; smaller-the-better ; simulation

期刊名称

品質學報

卷期/出版年月

18卷1期(2011 / 03 / 01)

页次

35 - 48

内容语文

英文

中文摘要

田口方法廣泛地應用於穩健設計,然而其統計方法卻遭到諸多的爭議與討論。本研究針對L12(2^11)和L32(2^31)直交表,利用模擬方法探討田口方法對望小型產品質特性值參數設計時,將不顯著因子誤判爲顯著因子之型Ⅰ錯誤的機率。假設所有的反應變數均爲常態分佈且有相同的平均值與標準差,因此,所有的因子均不顯著之虛無假設爲真。然而模擬的結果顯示這兩種直交表之型Ⅰ錯誤的機率都很高。實務上,這樣的誤判將對不相關或不重要的因子造成不必要的調查與推測。最後,田口品質工程的觀念雖然重要,然而,其統計手法包括信號雜訊比、向上合併誤差(pooling-up)方法卻提供了高風險的參數設計。

英文摘要

The Taguchi method has been widely used for parameter design. Nevertheless, its statistical techniques have been the subject of much debate and discussion among statisticians. This research investigates the alpha mistake of Taguchi method, or the probability of identifying insignificant factors as significant, with L12 (2^11) and L32 (2^31) arrays for the smaller-the-better (STB) type quality characteristic (QCH) using simulation. It is assumed that all response values are normally distributed with the same mean and standard deviation. The null hypothesis that all factors are insignificant is therefore true. Simulation results, however, showed high alpha mistake with both arrays. In reality, such mistake shall initiate unnecessary investigating and reasoning of helpless or unimportant factors. In conclusion, Taguchi's quality engineering concepts are of main importance. However, his statistical tools, including signal-to-noise ratio, pooling-up technique, provide risky parameter design.

主题分类 社會科學 > 管理學
参考文献
  1. Ben-Gal, I.(2005).On the use of data compression measures to analyze robust designs.IEEE Transactions on Reliability,54(3),381-388.
  2. Box, G.(1988).Signal-to-noise ratios, performance criteria, and transformations.Technometrics,30(1),1-17.
  3. Hung, C. C.,Shih, H. C.(2001).Experimental design method applied to microwave plasma enhanced chemical vapor deposition diamond films.Journal of Crystal Growth,233(4),723-729.
  4. Leon, R. V.,Shoemaker, A. C.,Kacker, R. N.(1987).Performance measures independent of adjustment: an explanation and extension of Taguchi's signal-to-noise ratios.Technometric,29(3),253-265.
  5. Li, M. H.,Al-Refaie, A.(2009).The alpha error of the Taguchi method with L16 array for the LTB response variable using simulation.Journal of Statistical Computation and Simulation,79(5),645-656.
  6. Li, M. H.,Kuo, H. W.,Yang, C. C.(2007).The alpha risk of Taguchi method for LTB type quality characteristic with L8.Quality and Quantity,41(5),737-748.
  7. Maghsoodloo, S.,Ozdemir, G.,Jordan, V.,Huang, C. H.(2004).Strengths and limitations of Taguchi's contributions to quality, manufacturing and process engineering.Journal of Manufacturing Systems,23(2),73-126.
  8. Phadke, M. S.(1989).Quality Engineering Using Robust Design.Englewood Cliffs, N.J.:Prentice-Hall.
  9. Ross, P. J.(1996).Taguchi Techniques for Quality Engineering.New York:McGraw Hill.
  10. Singh, S.,Shan, H. S.,Kumar, P.(2002).Parametric optimization of magnetic-field-assisted abrasive flow machining by the Taguchi method.Quality and Reliability Engineering International,18(4),273-283.
  11. Sun, H. W.,Liu, J. Q.,Chen, D.,Gu, P.(2005).Optimization and experimentation of nanoimprint lithography based on FIB fabricated stamp.Microelectronic Engineering,82(2),175-179.
  12. Taguchi, G.(1991).Taguchi Methods Research and Development.Dearborn, MI.:American Suppliers Institute Press.
  13. Tsui K. L.(1996).A critical look at Taguchi's modelling approach for robust design.Journal of Applied Statistics,23(1),81-95.