题名

Understanding Customer Innovativeness: A Soft Computing Approach in the Database Marketing Context

并列篇名

資料庫行銷環境下以柔性計算方法瞭解顧客對創新產品的採用傾向

作者

陳永信(Yung-Hsin Chen);蔡碩倉(Shuo-Chang Tsai);陳隆泰(Lung-Tai Chen)

关键词

創新採用程度 ; 柔性計算方法 ; 顧客知識管理 ; innovativeness ; soft computing ; segmentation ; customer knowledge management

期刊名称

品質學報

卷期/出版年月

18卷5期(2011 / 10 / 01)

页次

407 - 423

内容语文

英文

中文摘要

創新是當代企業的重點策略,雖然產品和服務的創新能帶給顧客新的價值,利益和便利,然而卻有可能在創新擴散及採用的過程中無法順利跨越“創新採用鴻溝”而告失敗。原因是這些創新產品只吸引了市場內的先進顧客群而無法成功地滲透到全面市場。因此,瞭解顧客對創新的回應以及打量不同區隔顧客們的創新採用傾向,然後開發並提供有魅力的產品,乃成爲產品商業化成功的緊要工作。公司既有的顧客資料庫可用以掌握顧客的行爲,並萃取對各個區隔的顧客知識。但是,市場區隔作業的品質也是重要之事,做好區隔才能確認目標顧客。本研究的主要目的在於提供一個新穎的方法論,以柔性計算方法決定區隔作業的品質,並以最佳的區隔結果得知顧客的創新採用傾向。最後用業界實際收集來的數據驗證本方法論的實用性。

英文摘要

Although innovation is the focus of business strategy nowadays, products/services innovation that deliver values, benefits, and convenience to customers may fail to cross the chasm in the process of innovation diffusion and adoption. This is because substantiation of market penetration never comes into being as the products/services attract merely customers of innovator segment in the market instead of those who are in the overall market. Therefore, understanding customer response to innovation, measuring customer innovativeness-the propensity of customers in different segments to adopt innovative products/services-and developing the attractive deliverables to them are crucial tasks for the success in commercialization. For a company, the customer database already in place enables the firm to capture customers' behavior and extract knowledge about customer innovativeness in different segments. However, the quality of segmentation task is also critical to empower the company to target the right customers. This paper makes a contribution toward the extant body of literature by presenting a novel methodology which firstly uses soft computing methods to determine the quality of segmentation task and then articulates customer innovativeness based on the best segmentation outcome. Data collected from an industry level case study is used for justification.

主题分类 社會科學 > 管理學
参考文献
  1. Alexander, D. L.、John, G. L. ,Jr.、Wang, Q.(2008)。As times go by: do cold feet follow warm intentions for really new versus incrementally new products?。Journal of Marketing Research,45(3),307-319。
  2. Bigné, E.,Aldas-Manzano, J.,Kuster, I.,Vila, N.(2010).Mature market segmentation: a comparison of artificial neural networks and traditional methods.Neural Computing and Applications,19(1),1-11.
  3. Castano, R.,Sujan, M.,Kacker, M.,Sujan, H.(2008).Managing consumer uncertainty in the adoption of new products: temporal distance and mental simulation.Journal of Marketing Research,45(3),320-336.
  4. Chan, C. C. H.(2008).Intelligent value-based customer segmentation method for campaign management: a case study of automobile retailer.Expert Systems with Applications,34(4),2754-2762.
  5. Chiu, C. Y.,Chen, Y. F.,Kuo, I. T.,Ku, H. C.(2009).An intelligent market segmentation system using K-means and particle swarm optimization.Expert Systems with Applications,36(3),4558-4565.
  6. Christensen, C. M.(1997).The Innovator's Dilemma.Boston, MA:Harvard Business School.
  7. Chundi, P.,Rosenkrantz, D. J.(2008).Efficient algorithms for segmentation of item-set time series.Data Mining and Knowledge Discovery,17(3),377-401.
  8. Cronbach, L.(1951).Coefficient alpha and the internal structure of tests.Psychometrika,16(3),297-334.
  9. D'' Ursoa, P.,Giovanni, L. D.(2008).Temporal self-organizing maps for telecommunications market segmentation.Neurocomputing,71(13-15),2880-2892.
  10. Davenport, T. H.,Harris, J. G.,Kohli, A. K.(2001).How do they know their customers so well?.MIT Sloan Management Review,42(2),63-73.
  11. Duda, K. O.,Hart, P. E.,Stork, D. G.(2001).Pattern Classification.New York:John Wiley and Sons, Inc..
  12. Garcia-Murillo, M.,Annabi, H.(2002).Customer knowledge management.Journal of the Operational Research Society,53(8),875-884.
  13. Gebert, H.,Geib, M.,Kolbe, L.,Brenner, W.(2003).Knowledge-enabled customer relationship management: integrating customer relationship management and knowledge management concepts.Journal of Knowledge Management,7(5),107-123.
  14. Hauser, J.,Tellis, G. J.,Griffin, A.(2006).Research on innovation: a review and agenda for marketing science.Marketing Science,25(6),687-717.
  15. Hill, C. W. L.,Jones, G. R.(2007).Strategic management theory- an integrated approach.Boston, MA.:Houghton Mifflin.
  16. Hoeffler, S.(2003).Measuring preferences for really new products.Journal of Marketing Research,40(4),406-420.
  17. Hung, C.,Tsai, C. F.(2008).Market segmentation based on hierarchical self-organizing map for markets of multimedia on demand.Expert Systems with Applications,34(1),780-787.
  18. Im, S.,Mason, C. H.,Houston, M. B.(2007).Does innate consumer innovativeness relate to new product/service adoption behavior? the intervening role of social learning via various innovations.Journal of the Academy of Marketing Science,35(1),63-75.
  19. Kohonen, T.(1990).The self-organizing map.Proceedings of the IEEE,78(9),1464-1480.
  20. Kuo, R. J.,An, Y. L.,Wang, H. S.,Chung, W. J.(2006).Integration of self-organizing feature maps neural network and genetic K-means algorithm for market segmentation.Expert Systems with Applications,30(2),313-324.
  21. Kuo, R. J.,Hong, S. M.,Lin, Y.,Huang, Y. C.(2008).Continuous genetic algorithm-based fuzzy neural network for learning fuzzy IF-THEN rules.Neurocomputing,71(13-15),2893-2907.
  22. Kuo, R. J.,Liao, J. L.,Tu, C.(2005).Integration of ART2 neural network and genetic K-means algorithm for analyzing Web browsing paths in electronic commerce.Decision Support Systems,40(2),355-374.
  23. Kuo, R. J.,Wang, H. S.,Hu, T. L.,Chou, S. H.(2005).Application of ant K-means on clustering analysis.Computer and Mathematics with Applications,50(10-12),1709-1724.
  24. Lee, J. H.,Park, S. C.(2005).Intelligent profitable customers segmentation system based on business intelligence tools.Expert Systems with Applications,29(1),145-152.
  25. Moore, G.(2000).Living on the Fault Line.New York:Harper Business.
  26. Pandys, A. S.,Macy, R. B.(1996).Pattern Recognition with Neural Network in C++.Boca Raton, FL:CRC Press.
  27. Peterson, H.(1998).Assessment of cluster analysis and self-organizing map.International Journal of Uncertainty,Fuzziness and Knowledge-Based System,6(2),139-149.
  28. Peterson, R. A.(1994).A meta-analysis of Cronbach's coefficient alpha.Journal of Consumer Research,21,387-391.
  29. Punj, G.,Stewart, D. W.(1983).Clustering analysis in marketing research: review and suggestion for application.Journal of Marketing Research,20(2),134-148.
  30. Rogers, E. V.(1983).Diffusion of Innovations.New York:Free Press.
  31. Sharma, S.(1996).Applied Multivariate Techniques.New York:John Wiley and Sons, Inc..
  32. Shaw, M. J.,Subramaniam, C.,Tan, G. W.,Welge, M. E.(2001).Knowledge management and data mining for marketing.Decision Support Systems,31(1),127-137.
  33. Stater, F. S.,Hult, G. T. M.,Olson, E. M.(2007).On the importance of matching strategic behavior and target market selection to business strategy in high-tech markets.Journal of the Academy of Marketing Science,35(1),5-17.
  34. Su, C. T.,Chen, Y. H.,Sha, D. Y.(2006).Linking innovative product development with customer knowledge: a data-mining approach.Technovation,26(7),784-795.
  35. Szymanski, D. M.,Kroff, M. W.,Troy, L. C.(2007).Innovativeness and new product success: insights from the cumulative evidence.Journal of the Academy of Marketing Science,35(1),35-52.