题名 |
數量關聯規則探勘之項目離散化方式評估 |
并列篇名 |
Evaluation of Item Discretization Methods for Quantitative Association Rule Mining |
作者 |
葉進儀(Jinn-Yi Yeh);廖冠傑(Guan-Jie Liao) |
关键词 |
關聯規則 ; 數量關聯規則 ; 離散化 ; 多重最小支持度 ; association rules ; quantitative association rules ; discretization ; multiple minimum supports |
期刊名称 |
品質學報 |
卷期/出版年月 |
18卷6期(2011 / 12 / 01) |
页次 |
489 - 517 |
内容语文 |
繁體中文 |
中文摘要 |
關聯規則探勘為資料探勘中的一種應用,對於如何找出商品之間的關係或關聯以產生收益,往往是零售組織們所重視的。過去許多關聯規則的研究著重在找出項目之間的關聯而忽略了購買數量,然而挖掘出項目購買數量之間的關聯可以更進一步地提升企業的決策品質。當考慮到項目購買數量時,項目之個別購買數量之支持度將會很低,因此探勘出的規則數量也會很少。為了可以探勘出更多潛在有價值之規則,本研究應用離散化方法將各個項目之購買數量分為數個區間,並以多重最小支持度之探勘方式探勘數量關聯規則。實驗設計法評估了各種不同離散化方式對於後續探勘數量關聯規則的影響,結果顯示以K—平均法及密度估計樹較其他離散化方式為佳,並且也顯示以多重最小支持度之探勘方式,可以找出低支持度之規則樣式,並且不會產生太多無意義之規則。 |
英文摘要 |
Mining association rules from a large database is a famous application in data mining. Enterprises in retail industry always focus on finding the connection or relationship among products to create profit. Previous studies on mining association rules only focused on discovering associations among items without considering the relationships between items and their purchased quantities. However, exploring associations among items with their purchased quantities may discover useful information to improve the quality of business decisions. When purchased quantities are considered, the supports of items associated with their purchased quantities may decrease drastically. The number of potentially interesting association rules discovered will also be few. In order to discover more potentially interesting rules, we apply discretization methods to partition all the possible quantities into intervals for each item and use multiple minimum supports for mining quantitative association rules. Using experimental design, we evaluate different discretization methods for mining quantitative association rules. Experimental results show that K-means and tree-based density estimation have better performances than other discretization methods. It also shows that mining association rules with multiple minimum supports enables us to find rare item rules without producing a huge number of meaningless rules. |
主题分类 |
社會科學 >
管理學 |
参考文献 |
|