题名

A Mathematical Model Based on Principal Component Analysis for Optimization of Correlated Multiresponse Surfaces

并列篇名

以主成份分析為基礎的數學模式找出相關性的多重反應曲面最佳化

DOI

10.6220/joq.2012.19(3).02

作者

Mahdi Bashiri;Taha Hossein Hejazi

关键词

多重反應取面 ; 相關性反應 ; 數學規劃 ; 主成份分析 ; Multiple Response Surface (MRS) ; correlated responses ; mathematical programming ; Principal Component Analysis (PCA)

期刊名称

品質學報

卷期/出版年月

19卷3期(2012 / 06 / 01)

页次

223 - 239

内容语文

英文

中文摘要

多重品質特性(或反應變數)最佳化遠比單一因子的最佳化來得複雜,因為我們面臨不同單位、重要性與最佳化方向。在大多數真實情形下,反應是相關的,因此下結論變得困難。若把品質特性的相關性忽略,工程設計人員可能無法發現設計變數的設定可以同時改善所有反應的品質。本研究以多重相關性反應的最佳化為重點,並且提出一個以主成份分析為基礎的新的數學模式。並且利用兩個從文獻找來的範例說明所提出的方法有較好的效率。

英文摘要

Optimization of multiple quality characteristics (or response variables) is more complicated than optimization of a single one since we face different units, importance and optimality directions. In most real situations there are correlated responses that make conclusion more difficult. If correlations among quality characteristics are ignored, engineering designer may miss finding design variable settings which simultaneously improved the quality of all the responses. In this work optimization of multiple correlated responses was studied and a novel mathematical model was proposed based on Principal Component Analysis (PCA) to optimize correlated multiresponse problems. The proposed method is also demonstrated by two numerical examples from the literature to confirm the efficiencies.

主题分类 社會科學 > 管理學
参考文献
  1. Hotelling, H., 1933, Analysis of a complex of statistical variables into principal components, Journal of Educational Psychology, 24(7), 498-520
  2. Ames, A. E.,Mattucci, N.,Macdonald, S.,Szonyi, G.,Hawkins, D. M.(1997).Quality loss functions for optimization across multiple responses surfaces.Journal of Quality Technology,29(3),339-346.
  3. Antony, J.(2000).Multi-response optimization in industrial experiments using Taguchi's quality loss function and principal component analysis.Quality and Reliability Engineering International,16(1),3-8.
  4. Artiles-León, N.(1996).A pragmatic approach to multiple-response problem using loss functions.Quality Engineering,9(2),213-220.
  5. Bashiri, M.,Hejazi, T. H.(2009).An extension of multi-response optimization in MADM view.Journal of Applied Sciences,9(9),1695-1702.
  6. Chiao, C.-H.,Hamada, M.(2001).Analyzing experiments with correlated multiple responses.Journal of Quality Technology,33(4),451-465.
  7. Del Castillo, E.,Montgomery, D. C.,McCarville, D. R.(1996).Modified desirability functions for multiple response optimization.Journal of Quality Technology,28(3),337-345.
  8. Derringer, G.,Suich, R.(1980).Simultaneous optimization of several response variables.Journal of Quality Technology,12(4),214-219.
  9. Donoso, Y.,Fabregat, R.(2007).Multi-Objective Optimization in Computer Networks Using Metaheuristics.Boca Raton, FL:Auerbach.
  10. Hejazi, T. H.,Bashiri, M.,Díaz-García, J. A.,Noghondarian, K.(2012).Optimization of probabilistic multiple response surfaces.Applied Mathematical Modelling,36(3),1275-1285.
  11. Hsieh, K.-L.(2006).Parameter optimization of a multi-response process for lead frame manufacturing by employing artificial neural networks.The International Journal of Advanced Manufacturing Technology,28(5-6),584-591.
  12. Kazemzadeh, R. B.,Bashiri, M.,Atkinson, A. C.,Noorossana, R.(2008).A general framework for multiresponse optimization problems based on goal programming.European Journal of Operational Research,189(2),421-429.
  13. Lai, Y.-J.,Chang, S. I.(1994).A fuzzy approach for multiresponse optimization: an off-line quality engineering problem.Fuzzy Sets and Systems,63(2),117-129.
  14. Layne, L.(1995).Methods to determine optimum factor levels for multiple responses in designed experimentation.Quality Engineering,7(4),649-656.
  15. Logothetis, N.,Haigh, A.(1988).Characterizing and optimizing multi-response processes by the Taguchi method.Quality and Reliability Engineering International,4(2),159-169.
  16. Pignatiello, J. J., Jr.(1993).Strategies for robust multiresponse quality engineering.IIE Transactions,25(3),5-15.
  17. Ribeiro, J. S.,Teófilo, R. F.,Augusto, F.,Ferreira, M. M. C.(2010).Simultaneous optimization of the microextraction of coffee volatiles using response surface methodology and principal component analysis.Chemometrics and Intelligent Laboratory Systems,102(1),45-52.
  18. Shah, H. K.,Montgomery, D. C.,Carlyle, W. M.(2004).Response surface modeling and optimization in multiresponse experiments using seemingly unrelated regressions.Quality Engineering,16(3),387-397.
  19. Su, C.-T.,Tong, L.-I.(1997).Multi-response robust design by principal component analysis.Total Quality Management,8(6),409-416.
  20. Timm, N. H.(2002).Applied Multivariate Analysis.New York:Springer-Verlag.
  21. Tong, L.-I.,Chen, C.-C.,Wang, C.-H.(2007).Optimization of multi-response processes using the VIKOR method.The International Journal of Advanced Manufacturing Technology,31(11-12),1049-1057.
  22. Tong, L.-I.,Su, C.-T.(1997).Optimizing multi-response problems in the Taguchi method by fuzzy multiple attribute decision making.Quality and Reliability Engineering International,13(1),25-34.
  23. Tong, L.-I.,Su, C.-T.,Wang, C.-H.(1997).The optimization of multi-response problems in Taguchi method.International Journal of Quality and Reliability Management,14(4),367-380.
  24. Tong, L.-I.,Wang, C.-H.,Chen, H.-C.(2005).Optimization of multiple responses using principal component analysis and technique for order preference by similarity to ideal solution.The International Journal of Advanced Manufacturing Technology,27(3-4),407-414.
  25. Wang, C.-H.(2007).Dynamic multi-response optimization using principal component analysis and multiple criteria evaluation of the grey relation model.The International Journal of Advanced Manufacturing Technology,32(5-6),617-624.
被引用次数
  1. Palacios, Carlo,Huang, Chien-Yi,Hong, Zih-Sia,Chen, Ching-Hsiang(2014).Parametric Design of the Adhesive Dispensing Process with Multiple Quality Characteristics.品質學報,21(4),233-245.