题名

多品質目標製程最佳化演算法

并列篇名

Optimization Multiple Quality Objective Algorithms

DOI

10.6220/joq.2012.19(5).02

作者

王嘉興(Dja-Shin Wang);鍾青原(Ching-Yuan Jhong);古東源(Tong-Yuan Koo)

关键词

多品質特性 ; 多目標最佳化 ; 演算法 ; multiple quality characteristics ; optimization multiple objective ; algorithms

期刊名称

品質學報

卷期/出版年月

19卷5期(2012 / 10 / 01)

页次

423 - 443

内容语文

繁體中文

中文摘要

現今複雜的製造程序中,企業經常需要同時最佳化多個品質特性,因此急需建立一套有效的方法,來找出同時兼顧多品質特性的製程最佳化參數組合;本研究目的即是快速解決多品質目標製程最佳化的問題。所提出方法是改良比例分配多目標粒子群演算法模型(Improved Proportional Distribution for Multi-objective Particle Swarm Optimization, IPD-MOPSO),可以適用於二個目標以上的多目標最佳化上,並同時加入次佳解機制。研究發現所搜尋出的非凌駕解能分佈更廣,而且避免掉落入局部最佳解,可獲得柏拉圖最佳解群體。實例驗證結果顯示,提供的新演算法,使用於二個目標以上的最佳化問題,皆能更均勻逼近柏拉圖前緣的柏拉圖最佳解集合。對多品質目標製程最佳化的問題,能提供工程師快速獲得最佳參數組合,對高科技產業多品質特性最佳化有顯著貢獻與效益。

英文摘要

In the intense competition nowadays, the industrial productions must have optimization multiple quality characteristics simultaneously. Therefore, the engineers need a methodology to solve these problems. In this paper, we proposed a new algorithm, say, Improved Proportional Distribution for Multi-objective Particle Swarm Optimization (IPD-MOPSO), was expanded to solve the problem with more than two objectives. The results show that can find out Pareto optimal solution set, and the second optimization solution mechanism is added to search nearby space besides of non-dominated solutions effectively. Two practical examples were presented to illustrate proposed approach, from the results of the solution search, finding out object solution space and Pareto-optimal solutions set. It can provide engineers/managers to find out optimization parametric design of multiple quality characteristics, and that have significant value on practical high technology industrial manufacture process.

主题分类 社會科學 > 管理學
参考文献
  1. Chang, H. H.(2008).A data mining approach to dynamic multiple responses in Taguchi experimental design.Expert Systems with Applications,35(3),1095-1103.
  2. Chaturvedi, K. T.,Pandit, M.,Srivastava, L.(2009).Particle swarm optimization with time varying acceleration coefficients for non-convex economic power dispatch.International Journal of Electrical Power & Energy Systems,31(6),249-257.
  3. Dhavlikar, M. N.,Kulkarni, M. S.,Mariappan, V.(2003).Combined Taguchi and dual response method for optimization of a centerless grinding operation.Journal of Materials Processing Technology,132(1-3),90-94.
  4. Frost, F.,Karri, V.(1999).Performance comparison of BP and GRNN models of the neural network paradigm using a practical industrial application.Proceedings of the 6th ICONIP International Conference on Neural Information Processing
  5. Gao, Y.,Ren, Z.(2007).Adaptive particle swarm optimization algorithm with genetic mutation operation.Proceedings of the 3rd International Conference on Natural Computation
  6. Kennedy, J.,Eberhart, R.(1995).Particle swarm optimization.Proceedings of IEEE International Conference on Neural Networks
  7. Kukkonen, S.,Deb, K.(2006).Improved pruning of non-dominated solutions based on crowding distance for bi-objective optimization problems.Proceedings of IEEE Congress on Evolutionary Computation
  8. Marquez, L.,Hill, T.(1993).Function approximation using backpropagation and general regression neural networks.Proceedings of the 26th Hawaii International Conference on System Sciences
  9. Mostaghim, S.,Teich, J.(2003).Strategies for finding good local guides in multi-objective particle swarm optimization (MOPSO).Proceedings of IEEE Swarm Intelligence Symposium
  10. Ratnaweera, A.,Halgamuge, S. K.,Watson, H. C.(2004).Self-Organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients.IEEE Transactions on Evolutionary Computation,8(3),240-255.
  11. Song, S.,Kong, L.,Gan, Y.,Su, R.(2008).Hybrid particle swarm cooperative optimization algorithm and its application to MBC in alumina production.Progress in Natural Science,18(11),1423-1428.
  12. Specht, D. F.(1991).A general regression neural network.IEEE Transactions on Neural Networks,2(6),568-576.
  13. Tzeng, Y. F.,Chen, F. C.(2007).Multi-objective optimisation of high-speed electrical discharge machining process using a Taguchi fuzzy-based approach.Materials & Design,28(4),1159-1168.
  14. 徐梓青(2004)。碩士論文(碩士論文)。臺南,臺灣,國立成功大學機械工程研究所。
  15. 黃焜銘(2002)。碩士論文(碩士論文)。雲林,臺灣,國立雲林科技大學工業工程與管理研究所。