题名

利用氣候溫度以逆向模擬訂定電子產品溫度規格與逆向失效樹分析之研究─以增進產品可靠度達到六標準差設計

并列篇名

The Research of Using Climate Temperature Stipulates the Temperature Specification of Electronics Product with Inverse Simulation and Inverse FTA-To Improve the Product Reliability and Reach DFSS

DOI

10.6220/joq.2013.20(1).01

作者

鄭春生(Chuen-Sheng Cheng);關季明(Chi-Ming Kuan)

关键词

六標準差設計 ; 可靠度 ; 失效樹分析 ; 逆向模擬 ; 逆向失效樹分析 ; DFSS (design for six sigma) ; reliability ; fault tree analysis ; inverse simulation ; inverse FTA (fault tree analysis)

期刊名称

品質學報

卷期/出版年月

20卷1期(2013 / 02 / 28)

页次

1 - 20

内容语文

繁體中文

中文摘要

以六標準差觀念之設計是促進產品設計一次達成六標準差之設計過程,它將設計程序建置在產品定義(Define)、需求衡量(Measure)、規格分析(Analyze)、細步設計(Detail Design)及驗證(Verify),即DMADV的程序。因產品六標準差設計必需與使用需求相關,故一定包含可靠度目標,因此六標準差設計將融合可靠度設計以臻完整;然而,以往可靠度設計以確定性分析,需延至試驗方能驗證是否達成目標(使失效率極小),如此可能使研發時間長,成本增加。本研究探討電子產品以實際應力先以確定性分析訂定初步設計規格,並以功能變異影響最大的溫度規格,利用逆向模擬方式將設定之初步溫度規格進行實際使用氣候溫度模擬確認生存機率(Survival Rate)高之溫度,方能確認為細步設計規格。當進行細步設計時,依可靠度配置而選用之零件溫度規格,以逆向失效樹分析,將實際使用氣候溫度作為虛擬感測器(Virture Sensor),對選用之零件溫度規格模擬生存機率,如生存機率低於1時,則顯示零件選用不適當,系統不安全,可立即修正零件溫度規格直到生存機率為1,方可保證此系統作用安全,不易失效(Failure Free)。本研究經機車之電儀表設計為例,證明利用逆向方法之可行性及可減少設計變更,縮短設計時間之優點。

英文摘要

The designs of six sigma ideas can impel the product design to reach the design processes of six sigma goals during researching and developing. It will design program the construction, in the procedure of DMADV, the products will be defined (Define), the requirements are weighed (Measure), specification analysis (Analyze), the detail design (Design) and design proving (Verify). Because design and must correlate with customer's demand in products six standard deviations. The specification will certainly include the reliability goal. So six sigma design, combine reliability design complete so as to attain. However, reliability design until deterministic analyze, take, prolong to test, can prove, reach goal (make minimum failure rate) in the past Like this, may enable and research and develop time long, cost increase. In this Research probe into electronic product analyze with deterministic temperature specified specification (Nominal Specification) that customer required. And, stipulate the preliminary design temperature specification. Then applied the inverse simulation method, imitate temperature specification that stipulate already in order to climate temperature that use actually. To confirm the temperature of high survival rate, can confirm the specification of detail design. Then while the detail design, dispose the goal in accordance with the reliability, select the part which accords with the temperature specification for use. During this period, set up inverse Fault Tree Analysis. Regard it as the virtue sensor device to use climate temperature actually, to the temperature simulation survival rate selecting the part for using. If lower than 1 in survival rating, reveal the part is selected for use incorrectly, i.e. the system is unsafe. Then the revision part temperature specification, until survival rate is 1. It will guarantee the systematic function of the products is safe, it is difficult to failure happened (Failure Free). This research is applied to the case study with the design of electronics instrument of the motorcycle, ones that proved and utilized inverse method are feasible and advantages of designing change reducibly, shorten the designing time.

主题分类 社會科學 > 管理學
参考文献
  1. Agarwal, H.,Mozumder, C. K.,Renaud, J. E.,Watson, L. T.(2007).An inverse-measure-based unilevel architecture for reliability-based design optimization.Structural and Multidisciplinary Optimization,33(3),217-227.
  2. Asan, U.,Polat, S.,Sanchez, R.(2008).Scenario-driven modular design in managing market uncertainty.International Journal of Technology Management,42(4),459-487.
  3. Bailey, S. P.,Mitchell, R. H.(2001).Six sigma: a breakthrough strategy or just another fad.Proceedings of the 55th Annual Quality Congress
  4. Breyfogle, F. W., III.(2003).Implementing Six Sigma: Smart Solutions Using Statistics Methods.New York:John Wiley.
  5. Crowe, D.,Feinberg, A.(2002).Design for Reliability.Boca Raton, FL:CRC Press.
  6. Elmallah, E. S.,AboEIFotoh, H. M. F.(2006).Circular layout cutsets: an approach for improving consecutive cutset bounds for network reliability.IEEE Transaction on Reliability,55(4),602-612.
  7. Ferryanto, L.(2005).DFSS: lessons learned.ASQ Six Sigma Forum Magazine,4,24-27.
  8. Gabbar, H. A.,Sayed, H. E.,Osunleke, A. S.,Masanobu, H.(2009).Design of fault simulator.Reliability Engineering and Systems Safety,94(8),1289-1298.
  9. Groen, F. J.,Smidts, C. S.,Mosleh, A.,Swaminathan, S.(2002).QRAS- the quantitative risk assessment system.Proceedings of the Annual Reliability and Maintainability Symposium
  10. Hoffmann, G. A.,Trivedi, K. S.,Malek, M.(2007).A best practice guide to resource focasting for computing systems.IEEE Transaction on Reliability,56(4),615-628.
  11. Kececioglu, D.(1991).Reliability and Life Testing Handbook.Englewood Cliff, NJ:Prentice Hall.
  12. Keller, P. A.(2001).Recent trends in six sigma.Proceedings of the 55th Annual Quality Congress
  13. Kumamoto, H.,Henly, E. J.(1996).Probabilistic Risk Assessment and Management for Engineers and Scientists.New York:IEEE Press.
  14. Li, J.-P.,Thompson, G.(2005).A method to take account of inhomogeneity in mechanical component reliability calculations.IEEE Transaction on Reliability,54(1),159-168.
  15. LuValle, M. J.,Lefevre, B. G.,SriRaman, K.(2004).Design and Analysis of Accelerated Tests for Mission Critical Reliability.Boca Raton, FL.:Chapman & Hall/CRC.
  16. McLinn, J. A.(1999).Acceleration life testing.Reliability Review, ASQ,19,5-11.
  17. Moghadam, M.,Bameni, A. M.(2005).Design optimization of current transformers using robust design methodology.Quality and Quantity,39,671-685.
  18. Myers, A.,Rauzy, A.(2008).Efficient reliability assessment of redundant system subject to imperfect fault coverage using binary decision diagram.IEEE Transaction on Reliability,57(2),336-348.
  19. Peter, C.,Oscar, H.,Shekhar, C.(2008).Product modularity and the product life cycle: new dynamics in the interactions of product and process technology.International Journal of Technology Management,42(4),365-386.
  20. Taubin, A.,Cortadella, J.,Lavagno, L.,Kontratyev, A.,Peeters, A.(2007).Design Automation of Real-Life Asynchronous Devices and Systems (Foundations and Trends® in Electronic Design Automation).Hanover, MA:Now Publishers.
  21. Volkanovski, A.,Cepin, M.,Mavko, B.(2009).Application of the fault tree analysis for assessment of power system reliability.Reliability Engineering and System Safety,94(6),1116-1127.
  22. Wang, D.,Trivedi, K. S.(2005).Computing steady state mean time between to failure for noncoherent repairable systems.IEEE Transaction on Reliability,54(3),506-516.
  23. Yen, W.,Herfat, A. T.(2004).Design criteria evaluation using field test data and reliability test improvement based on statistical analysis.procceedings of the 2004 Annual Symposium of Reliability and Maintainability (RAMS)
被引用次数
  1. 盧昆宏、劉威志(2018)。應用精實六標準差提升In-House公司的發料效率。品質學報,25(6),380-398。
  2. 鄭春生、張庫旗、何應(2019)。應用六標準差手法改善覆晶載板(FCBGA)之電鍍均勻性。品質學報,26(2),114-125。