题名

整合獨立成分分析與統計製程管制圖於產品件內和件間變異監控之應用

并列篇名

Monitoring of Within-Part and Between-Part Variations with Independent Component Analysis and Statistical Process Control

DOI

10.6220/joq.2013.20(1).07

作者

鄭春生(Chuen-Sheng Cheng);黃國格(Kuo-Ko Huang)

关键词

件內和件間變異 ; 統計製程管制 ; 獨立成分分析 ; within-part and between-part variations ; statistical process control ; independent component analysis

期刊名称

品質學報

卷期/出版年月

20卷1期(2013 / 02 / 28)

页次

137 - 154

内容语文

繁體中文

中文摘要

隨著產品特性之複雜化,我們需要在一件產品的不同位置量測品質特性。因此在監控產品品質之量測值時,由變異來源造成的時間性變異樣式與空間性變異樣式可能會成為觀測到的件內和件間變異。利用傳統管制圖來監控原始觀測值的件內和件間變異雖然可行,但並非是一種有效率或者有效益之方法。此乃因為觀測值是由不同變異來源交互影響之後的結果。如果可以直接監控變異來源之變化,將會是一個更具有效率及效益之製程管制方法。本研究之目的是應用獨立成分分析自原始觀測數據分離出獨立成分(變異來源)後,再使用I-MR管制圖與Hotelling T^2管制圖對獨立成分進行監控。本研究所提出之監控方式將以一個模擬範例及一個物理氣相沉積薄膜的實際製程資料加以驗證。本研究是以監控製程觀測值之I-MR-R/S管制圖做為比較基準,並以平均連串長度作為績效指標。實驗結果顯示,當製程出現平均數偏移以及平均數呈趨勢遞增之製程異常情形時,本研究所提之方法會比傳統管制圖更快偵測到製程平均數的變化狀況。

英文摘要

With the complexity of product characteristics, it is now necessary to measure quality characteristic at different locations across a part. In the monitoring of product quality measurements, the temporal pattern and spatial variation pattern caused by a variation source may turn out to be the observed within- and between-part variations. It is feasible to apply traditional control charts to monitoring the within- and between-part variations. However, it may be neither effective nor efficient due to the fact that observed measurements are mixture of several variation sources.The proposed scheme first applies ICA methodology to the process observations to generate the independent components that contain different characteristics of the process. The I-MR control chart and Hotelling T^2 control chart are then used to monitor the independent components for process control. The proposed procedures were implemented via a simulated processes and a case study of the physical vapor deposition process. The experimental results show that the proposed methods can detect faults faster than I-MR-R/S control chart.

主题分类 社會科學 > 管理學
参考文献
  1. Chen, W. S.(2012).Variation pattern identification and fault diagnosis of solder paste deposit by using independent component analysis.Journal of Quality,19(1),21-39.
    連結:
  2. Cheng, H. P.,Cheng, C. S.(2009).Control chart pattern recognition using wavelet analysis and neural networks.Journal of Quality,16(5),311-321.
    連結:
  3. 黃馨瑩、邱志洲(2007)。整合獨立成份分析與分類迴歸樹在製程干擾辨識上之應用。輔仁管理評論,14(3),121-144。
    連結:
  4. Hotelling, H., 1947, Multivariate quality control-illustrated by the air testing of sample bombsights, Techniques of Statistical Analysis, edited by Eisenhart, C., Hastay, M. W., and Wallis, W. A., McGraw-Hill, New York, 111-184.
  5. Apley, D. W.,Lee, H. Y.(2003).Identifying spatial variation patterns in multivariate manufacturing processes: a blind separation approach.Technometrics,45(3),220-234.
  6. Bowman, A. W.,Azzalini, A.(1997).Applied Smoothing Techniques for Data Analysis.New York:Oxford University Press.
  7. Hsu, C. C.,Chen, M. C.,Chen, L. S.(2010).A novel process monitoring approach with dynamic independent component analysis.Control Engineering Practice,18(3),242-253.
  8. Hsu, C. C.,Chen, M. C.,Chen, L. S.(2010).Integrating independent component analysis and support vector machine for multivariate process monitoring.Computers and Industrial Engineering,59(1),145-156.
  9. Hsu, C. C.,Chen, M. C.,Chen, L. S.(2010).Intelligent ICA-SVM fault detector for non-Gaussian multivariate process monitoring.Expert Systems with Applications,37(4),3264-3273.
  10. Huang, S. P.,Chiu, C. C.(2009).Process monitoring with ICA-based signal extraction technique and CART approach.Quality and Reliability Engineering International,25(5),631-643.
  11. Hyvärinen, A.(1999).Fast and robust fixed-point algorithms for independent component analysis.IEEE Transactions on Neural Networks,10(3),626-634.
  12. Hyvärinen, A.,Oja, E.(2000).Independent component analysis: algorithms and applications.Neural Networks,13(4-5),411-430.
  13. Kano, M.,Hasebe, S.,Hashimoto, I.,Ohno, H.(2004).Evolution of multivariate statistical process control: application of independent component analysis and external analysis.Computers and Chemical Engineering,28(6-7),1157-1166.
  14. Kano, M.,Tanaka, S.,Hasebe, S.,Hashimoto, I.,Ohno, H.(2003).Monitoring independent components for fault detection.AIChE Journal,49(4),969-976.
  15. Kim, K. S.,Yum, B. J.(1999).Control charts for random and fixed components of variation in the case of fixed wafer locations and measurement positions.IEEE Transactions on Semiconductor Manufacturing,12(2),214-228.
  16. Lee, J. M.,Qin, S. J.,Lee, I. B.(2006).Fault detection and diagnosis based on modified independent component analysis.AIChE Journal,52(10),3501-3514.
  17. Lee, J. M.,Yoo, C. K.,Lee, I. B.(2004).Statistical process monitoring with independent component analysis.Journal of Process Control,14(5),467-485.
  18. Lee, J. M.,Yoo, C. K.,Lee, I. B.(2003).Statistical process monitoring with multivariate exponentially weighted moving average and independent component analysis.Journal of Chemical Engineering of Japan,36(5),563-577.
  19. Lu, C. J.,Shao, Y. J.,Li, B. S.(2011).Mixture control chart patterns recognition using independent component analysis and support vector machine.Neurocomputing,74(11),1908-1914.
  20. Lu, C. J.,Wu, C. M.,Keng, C. J.,Chiu, C. C.(2008).Integrated application of SPC/EPC/ICA and neural networks.International Journal of Production Research,46(4),873-893.
  21. MathWorks.(2012).MATLAB 7.14 User's Guide.Natick, MA.:MathWorks Inc..
  22. Montgomery, D. C.(2009).Introduction to Statistical Quality Control.New York:Wiley.
  23. 莊寶鵰(1996)。以模糊推論確認多變量製程管制的特殊變因。品質學報,2(2),49-65。
被引用次数
  1. (2022)。提升機械加工品管:智慧製造在即時量測與異常警示的實證。產業管理評論,13(1),27-46。