参考文献
|
-
Alfaro, E.,Alfaro, J. L.,Gámez, M.,García, N.(2009).A boosting approach for understanding out-of-control signals in multivariate control charts.International Journal of Production Research,47(24),6821-6831.
-
Aparisi, F.,Avendaño, G.,Sanz, J.(2007).Neural networks to identify the out-of-control process variables when a MEWMA chart is employed.Proceedings of the The 16th IASTED International Conference on Applied Simulation and Modelling
-
Aparisi, F.,Avendaño, G.,Sanz, J.(2006).Techniques to interpret T2 control chart signals.IIE Transactions,38(8),647-657.
-
Aparisi, F.,Carrión, A.(2010).Artificial neural networks for identifying the signals of multivariate EWMA control chart.Proceedings of 2010 10th International Conference on Intelligent Systems Design and Applications
-
Breiman, L.,Friedman, J. H.,Olshen, R. A.,Stone, C. J.(1984).Classification and Regressing Tree.Pacific Grove, CA.:Wadsworth.
-
Chen, L. H.,Wang, T. Y.(2004).Artificial neural networks to classify mean shifts from multivariate χ2 chart signals.Computers and Industrial Engineering,47(2-3),195-205.
-
Cheng, C. S.,Cheng, H. P.(2008).Identifying the source of variance shifts in the multivariate process using neural networks and support vector machines.Expert Systems with Applications,35(1-2),198-206.
-
Cheng, C. S.,Cheng, H. P.,Huang, K. K.(2009).Interpreting the mean shift signals in multivariate control charts using support vector machine-based classifier.Proceedings of IEEE International Conference on Industrial Engineering and Engineering Management
-
Dietterich, T. G.(1997).Machine learning research: four current directions.AI Magazine,18(4),97-136.
-
Doganaksoy, N.,Faltin, F. W.,Tucker, W. T.(1991).Identification of out-of-control quality characteristics in a multivariate manufacturing environment.Communications in Statistics-Theory and Methods,20(9),2775-2790.
-
Freund, Y.(1995).Boosting a weak learning algorithm by majority.Information and Computation,121(2),256-285.
-
Guh, R. S.(2007).On-line identification and quantification of mean shifts in bivariate processes using a neural network-based approach.Quality and Reliability Engineering International,23(3),367-385.
-
Guh, R. S.(2005).A hybrid learning-based model for on-line detection and analysis of control chart patterns.Computers and Industrial Engineering,49(1),35-62.
-
Guh, R. S.,Shiue, Y. R.(2005).On-line identification of control chart pattern using self-organizing approaches.International Journal of Production Research,43(6),1225-1254.
-
Hansen, L.,Salamon, P.(1990).Neural network ensembles.IEEE Transactions on Pattern Analysis and Machine Intelligence,12(10),993-1001.
-
Hayter, A. J.,Tsui, K. L.(1994).Identification and quantification in multivariate quality control problems.Journal of Quality Technology,26(3),197-208.
-
He, S. G.,He, Z.,Wang, G. A.(2011).Online monitoring and fault identification of mean shifts in bivariate processes using decision tree learning techniques.Journal of Intelligent Manufacturing,24(1),1-10.
-
Hwarng, H. B.(2009).Toward identifying the source of mean shift in multivariate SPC: a neural network approach.International Journal of Production Research,46(20),5531-5559.
-
Jackson, J. E.(1985).Multivariate quality control.Communications in Statistics-Theory and Methods,14(11),2657-2688.
-
Kim, M. J.,Kang, D. K.(2010).Ensemble with neural networks for bankruptcy prediction.Expert Systems with Applications,37(4),3373-3379.
-
Kotsiantis, S. B.,Pintelas, P. E.(2004).Combining bagging and boosting.International Journal of Computational Intelligence,1(4),324-333.
-
Ma, Y. Z.,Zhao, F. Y.(2003).A new approach to diagnosing signals from multivariate EWMA control chart.International Journal of Plant Engineering and Management,8(4),427-431.
-
Mason, R. L.,Tracy, N. D.,Young, J. C.(1997).A practical approach for interpreting multivariate T2 control chart signals.Journal of Quality Technology,29(4),396-406.
-
Mason, R. L.,Tracy, N. D.,Young, J. C.(1995).Decomposition of T2 for multivariate control chart interpretation.Journal of Quality Technology,27(2),99-108.
-
Montgomery, D. C.(2009).Introduction to Statistical Quality Control.New York:Wiley & Sons.
-
Murphy, B. J.(1987).Selecting out-of-control variables with T2 multivariate quality procedures.The Statistician,36(5),571-583.
-
Niaki, S. T. A.,Abbasi, B.(2005).Fault diagnosis in multivariate control charts using artificial neural networks.International Quality and Reliability Engineering,21(8),825-840.
-
Niaki, S. T. A.,Fallahnezhad, M. S.(2009).Decision-making in detecting and diagnosing faults of multivariate statistical quality control systems.International Journal of Advanced Manufacturing Technology,42(7-8),713-724.
-
Psarakis, S.(2011).The use of neural networks in statistical process control charts.Quality and Reliability Engineering International,27(5),641-650.
-
Shao, Y. E.,Wu, C. H.,Ho, B. Y.,Hsu, B. S.(2008).A neural network-based approach to identifying out-of-control variables for multivariate control charts.Lecture Notes in Computer Science,5236,644-652.
-
Sun, R.,Tsung, F.(2003).A kernel-based multivariate control chart using support vector methods.International Journal of Production Research,41(13),2975-2989.
-
Wang, T. Y.,Chen, L. H.(2002).Mean shifts detection and classification in multivariate process: a neural-fuzzy approach.Journal of Intelligent Manufacturing,13(3),211-221.
-
Yu, J. B.,Xi, L. F.(2009).A hybrid learning-based model for on-line monitoring and diagnosis of out-of-control signals in multivariate manufacturing processes.International Journal of Production Research,47(15),4077-4108.
-
Yu, J. B.,Xi, L. F.(2009).A neural network ensemble-based model for on-line monitoring and diagnosis of out-of-control signals in multivariate manufacturing processes.Expert Systems with Applications,36(1),909-921.
-
Yu, J. B.,Xi, L. F.,Zhou, X. J.(2009).Identifying source(s) of out-of-control signals in multivariate manufacturing processes using selective neural network ensemble.Engineering Applications of Artificial Intelligence,22(1),141-152.
-
Yu, L.,Yue, W.,Wang, S.,Lai, K. K.(2010).Support vector machine based multiagent ensemble learning for credit risk evaluation.Expert Systems with Applications,37(2),1351-1360.
|