题名

IDEA Approach for Solving Multi-Responses Fuzziness Problem in Robust Design

并列篇名

利用乏晰資料包絡分析以解決穩健設計中之多變量模糊問題

DOI

10.6220/joq.2014.21(6).03

作者

李明賢(Caleb Ming-Hsien Li);雷方奕(Abbas Al-Refaie);哈珊(Mohammad Hasan);葉兆雄(Benjamin Chao-Hsiung Yeh)

关键词

乏晰資料包絡分析 ; 田口方法 ; 多變量 ; imprecise data envelopment analysis ; Taguchi method ; multi-responses

期刊名称

品質學報

卷期/出版年月

21卷6期(2014 / 12 / 31)

页次

455 - 478

内容语文

英文

中文摘要

大多數製造業應用資料包絡分析(data envelopment analysis, DEA)模式均假設所有的資料都有特定的值,然而在某些情況下,資料可能是乏晰的。因此,本研究在田口方法中提出乏晰資料包絡分析(imprecise data envelopment analysis, IDEA)以解決多變量模糊問題。變量的乏晰性乃是因為製程本身的複雜性與模糊行為所致。因此,每個變量均用一個有上限和下限之區間所定義,這些多重變量值與其因素水準組合轉變成一個具有上限和下限的區間值,稱之為相對區間效率,每個實驗的因素水準組合可視為一組決策單位(decision making unit, DMU),兩種IDEA模式用來計算DMU之上限和下限效率值。最後,利用乏晰多目標DEA模式來決定最佳因素水準組合。並以兩個個案研究做為說明,利用本文所提供之方法在兩個個案中均獲得較優於主成份分析和渴望函數之結果。

英文摘要

Most manufacturing applications on data envelopment analysis (DEA) models assume that all data have the form of specific numerical values. In some circumstances, however, the data may be imprecise. This research, therefore, proposes an approach for solving the multi-responses fuzziness problem in the Taguchi method using the Imprecise Data Envelopment Analysis (IDEA) approach. The response fuzziness is caused by complex and vague behavior of the process itself. Thus, each response is defined by an interval bounded by lower and upper values. The multiple response values correspond to each combination factor settings are transformed into a single measure with lower and upper values, called the relative interval efficiency. The combination of factor settings at each experiment is treated as a decision making unit (DMU). Two IDEA models are employed to calculate DMU's upper and lower efficiency values. Finally, a fuzzy multi objective data envelopment analysis (DEA) model is used to determine the best combination of factor settings. Two case studies are adopted for illustration; in both of which the proposed approach achieved competitive improvements against the principle component analysis and desirability function.

主题分类 社會科學 > 管理學
参考文献
  1. Al-Refaie, A.(2014).FGP model to optimize performance of tableting process with three quality responses.Transactions of the Institute of Measurement and Control,36(3),336-346.
  2. Al-Refaie, A.(2010).Super-efficiency DEA approach for optimizing multiple quality characteristics in parameter design.International Journal of Artificial Life Research,1(2),58-71.
  3. Al-Refaie, A.(2013).Optimization of multiple responses in the Taguchi method using fuzzy regression.Artificial Intelligence for Engineering Design, Analysis and Manufacturing,28(1),99-107.
  4. Al-Refaie, A.(2009).Optimizing SMT performance using comparisons of Efficiency between different systems technique in DEA.IEEE Transactions on Electronics Packaging Manufacturing,32(4),256-264.
  5. Al-Refaie, A.(2012).Optimizing performance with multiple responses using cross-evaluation and aggressive formulation in data envelopment analysis.IIE Transactions,44(4),262-276.
  6. Al-Refaie, A.(2011).Optimizing correlated QCHs using principal components analysis and DEA techniques.Production Planning & Control: The Management of Operations,22(7),676-689.
  7. Al-Refaie, A.(2010).Grey-data envelopment analysis approach for solving the multi-response problem in the Taguchi method.Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture,224(1),147-158.
  8. Al-Refaie, A.,Al-Tahat, M. D.(2011).Solving the multi-response problem in Taguchi method by benevolent formulation in DEA.Journal of Intelligent Manufacturing,22(4),505-521.
  9. Al-Refaie, A.,Fouad, R. H.,Li, M.-H.,Shurrab, M.(2014).Applying simulation and DEA to improve performance of emergency department in a Jordanian hospital.Journal of Simulation Modelling Practice and Theory,41,59-72.
  10. Al-Refaie, A.,Li, M.-H.(2011).Optimizing the performance of plastic injection molding using weighted additive model in goal programming.Fuzzy System Applications,1(2),1-12.
  11. Al-Refaie, A.,Li, M.-H. C.,Chang, B.-C.,Jalham, I.(2012).Application of the Taguchi approach to improve performance of the alignment-layer printing process in liquid crystal displays.Journal of Engineering Manufacture,226(7),1241-1248.
  12. Al-Refaie, A.,Rawabdeh, I.,Abu-alhaj, R.,Jalham, I.(2012).A fuzzy multiple regressions approach for optimizing multiple responses in the Taguchi method.International Journal of Fuzzy System Applications,2(3),13-34.
  13. Al-Refaie, A.,Wu, T.-H.,Li, M.-H.(2009).Data envelopment analysis approaches for solving the multi characteristics problem in the Taguchi method, artificial intelligence for engineering design.Analysis and Manufacturing,23(2),159-173.
  14. Cook, W. D.,Seiford, L. M.(2009).Data Envelopment Analysis (DEA)-thirty years on.European Journal of Operational Research,192(1),1-17.
  15. Cooper, W. W.,Park, K. S.,Yu, G.(2001).An illustrative application of idea (imprecise Data Envelopment Analysis) to a Korean mobile telecommunication company.Operations Research,49(6),807-820.
  16. Cooper, W. W.,Park, K. S.,Yu, G.(1999).IDEA and AR-IDEA: models for dealing with imprecise data in DEA.Management Science,45(4),597-607.
  17. Datta, S.,Nandi, G.,Asish, B.,Pal, P. K.(2010).Application of PCA-based hybrid Taguchi method for correlated multi criteria optimization of submerged arc weld: a case study.The International Journal of Advanced Manufacturing Technology,45(3-4),276-287.
  18. Datta, S.,Nandi, G.,Bandyopadhyay, A.(2009).Application of entropy measurement technique in grey based Taguchi method for solution of correlated multiple characteristics optimization problems: a case study in welding.Journal of Manufacturing Systems,28(2-3),55-63.
  19. Derringer, G. C.(1994).A balancing act: optimizing a product's properties.Quality Progress,27(6),51-58.
  20. Derringer, G.,Suich, R.(1980).Simultaneous optimization of several response variables.Journal of Quality Technology,12(4),214-219.
  21. Despotis, D. K.,Smirlis, Y. G.(2002).Data envelopment analysis with imprecise data.European Journal of Operational Research,140(1),24-36.
  22. Fung, C.-F.,Kang, P.-C.(2005).Multi-response optimization in friction properties of PBT composites using Taguchi method and principle component analysis.Journal of Materials Processing Technology,170(3),602-610.
  23. Hadi-Vencheh, A.,Matin, R. K.(2011).An application of IDEA to wheat farming efficiency.Agricultural Economics,42(4),487-493.
  24. Hsieh, K.-L.,Tong, L.-I.(2001).Optimization of multiple quality responses involving qualitative and quantitative characteristics in IC manufacturing using neural network.Computers in Industry,46(1),1-12.
  25. Jafarian-Moghaddam, A. R.,Ghoseiri, K.(2012).Multi-objective data envelopment analysis model in fuzzy dynamic environment with missing values.International Journal of Advanced Manufacturing Technology,61(5-8),771-785.
  26. Jeyapaul, R.,Shahabudeen, P.,Krishnaiah, K.(2005).Quality management research by considering multi-characteristics problems in the Taguchi method-a review.The International Journal of Advanced Manufacturing Technology,26(11-12),1331-1337.
  27. Kao, C.,Liu, S.-T.(2000).Data envelopment analysis with missing data: an application to university libraries in Taiwan.Journal of the Operational Research Society,51(8),897-905.
  28. Kao, C.,Liu, S.-T.(2005).Data envelopment analysis with imprecise data: an application of Taiwan machinery firms.International Journal of Uncertainty Fuzziness and Knowledge-Based Systems,13(2),225-240.
  29. Karsak, E. E.(2008).Using data envelopment analysis for evaluating flexible manufacturing systems in the presence of imprecise data.The International Journal of Advanced Manufacturing Technology,35(9-10),867-874.
  30. Kim, K.-J.,Lin, D. K. J.(2006).Optimization of multiple responses considering both location and dispersion effects.European Journal of Operational Research,169(1),133-145.
  31. Kim, K.-J.,Lin, D. K. J.(2000).Simultaneous optimization of multiple responses by maximizing exponential desirability functions.Journal of the Royal Statistical Society: Series C (Applied Statistics),49(3),311-325.
  32. Liao, H.-C.,Chen, Y.-K.(2002).Optimizing multi response problem in the Taguchi method by DEA based ranking method.International Journal of Quality & Reliability Management,19(7),825-837.
  33. Moon, H.-S.(2013).The relative efficiency analysis of innovation activities with uncertainty: the case of Korean electronic equipment industry.Innovation: Management Policy & Practice,15(3),305-314.
  34. Mugera, A. W.(2013).Measuring technical efficiency of dairy farms with imprecise data: a fuzzy data envelopment analysis approach.Australian Journal of Agricultural and Resource Economics,57(4),501-520.
  35. Puri, J.,Yadav, S. P.(2013).A concept of fuzzy input mix-efficiency in fuzzy DEA and its application in banking sector.Expert Systems with Applications,40(5),1437-1450.
  36. Saen, R. F.(2009).Supplier selection by the pair of nondiscretionary factors-imprecise data envelopment analysis models.Journal of the Operational Research Society,60(11),1575-1582.
  37. Saen, R. F.(2010).Developing a new data envelopment analysis methodology for supplier selection in the presence of both undesirable outputs and imprecise data.The International Journal of Advanced Manufacturing Technology,51(9-12),1243-1250.
  38. Salehi, M.,Bahreininejad, A.,Nakhai, I.(2011).On-line analysis of out-of-control signals in multivariate manufacturing processes using a hybrid learning-based model.Neurocomputing,74(12-13),2083-2095.
  39. Salehi, M.,Kazemzadeh, R. B.,Salmasnia, A.(2012).On line detection of mean and variance shift using neural networks and support vector machine in multivariate processes.Applied Soft Computing,12(9),2973-2984.
  40. Salmasnia, A.,Kazemzadeh, R. B.,Niaki, S. T. A.(2012).An approach to optimize correlated multiple responses using principal component analysis and desirability function.The International Journal of Advanced Manufacturing Technology,62(5-8),835-846.
  41. Sarle, W. S.(1995).Stopped training and other remedies for overfitting.Proceedings of the 27th Symposium on the Interface of Computing Science and Statistics
  42. Schölkopf, B.,Burges, C.,Vapnik, V.(1995).Extracting support data for a given task.Proceedings of the First International International Conference on Knowledge Discovery & Data Mining
  43. Shao, Y. E.,Lu, C.-J.,Wang, Y.-C.(2012).A hybrid ICA-SVM approach for determining the quality variables at fault in a multivariate process.Mathematical Problems in Engineering,2012(12)
  44. Silver, G. A.,Silver, M.(1989).Systems Analysis and Design.Reading, MA:Addison-Wesley.
  45. Sun, J.,Rahman, M.,Wong, Y. S.,Hong, G. S.(2004).Multiclassification of tool wear with support vector machine by manufacturing loss consideration.International Journal of Machine Tools & Manufacture,44(11),1179-1187.
  46. Tan, A. C.,Gilbert, D.,Deville, Y.(2003).Multi-class protein fold classification using new ensemble machine learning approach.Genome Informatics,14,206-217.
  47. Tay, F. E. H.,Cao, L.(2001).Application of support vector machines in financial time series forecasting.Omega,29(4),309-317.
  48. Tracy, N.,Young, J.,Mason, R.(1992).Multivariate control charts for individual observations.Journal of Quality Technology,24(2),88-95.
  49. Vapnik, V. N.(2000).The Nature of Statistical Learning Theory.New York:Springer.
  50. Western Electric Company(1958).Statistical Quality Control Handbook.New York:Western Electric Company.
  51. Weston, J.,Watkins, C.(1998).,England:.
  52. Wierda, S. J.(1994).Multivariate statistical process control-recent results and directions for future research.Statistica Neerlandica,48(2),147-168.
  53. Wu, B.,Yu, J.(2010).A neural network ensemble model for on-line monitoring of process mean and variance shifts in correlated processes.Expert Systems with Applications,37(6),4058-4065.
  54. Yu, J.,Xi, L.(2009).A hybrid learning-based model for on-line monitoring and diagnosis of out-of-control signals in multivariate manufacturing processes.International Journal of Production Research,47(15),4077-4108.
  55. Yu, J.,Xi, L.,Zhou, X.(2009).Identifying source(s) of out-of-control signals in multivariate manufacturing processes using selective neural network ensemble.Engineering Application of Artificial Intelligence,22(1),141-152.
  56. Zhou, Z.-H.,Wu, J.,Tang, W.(2002).Ensembling neural networks: many could be better than all.Artificial Intelligence,137(1-2),239-263.