题名

整合平滑樣條法與決策樹於非線性剖面製程之研究

并列篇名

The Monitoring of Nonlinear Profiles Using Smoothing Spline and Decision Tree Model

DOI

10.6220/joq.2015.22(2).01

作者

李虹葶(Hung-Ting Lee);黃照雅(Jau-Ya Huang);鄭春生(Chuen-Sheng Cheng)

关键词

非線性剖面 ; 無母數迴歸 ; 平滑樣條法 ; 決策樹 ; nonlinear profile ; non-parametric regression ; distance-based metrics ; decision tree

期刊名称

品質學報

卷期/出版年月

22卷2期(2015 / 04 / 30)

页次

77 - 87

内容语文

繁體中文

中文摘要

在傳統統計製程管制(statistical process control, SPC)之應用中,我們假設一個物件或製程之品質,可以由一個量測值或來自多變量分配之數個量測值來描述。但在許多實務應用中,我們需要監控一條由數個資料所構成之直線或曲線。這些直線或曲線被稱為剖面(profile)或函數。剖面資料可以利用一個線性或非線性之模型來表示。本研究之目的是建立監控非線性剖面製程之管制程序。此管制程序包含利用屬於無母數迴歸之平滑樣條法來建立參考剖面,接著再發展出以距離為基之特徵值。一個決策樹分類模型利用這些特徵值來進行剖面製程之監控。本研究所提出之管制程序是以彩色濾光片的銦鋅氧化物製程資料,來驗證其可行性和有效性。研究結果顯示,使用平滑樣條法可以有效地去除雜訊,其建立的平滑曲線可以作為參考剖面。深入的比較顯示,本研究所提出的特徵值,可以有效地提升決策樹之分類正確率,進而提升監控非線性剖面之效益。

英文摘要

In traditional statistical process control (SPC) applications, it is assumed that the quality of a product or process can be characterized by a single measurement from a univariate distribution or multiple measurements from a multivariate distribution. However, in some practical applications, there is a demand in monitoring multiple measurements constituting a line or curve that is often referred to as a profile or function. Such profiles can be represented by a linear or nonlinear model. This paper focuses on the monitoring of nonlinear profiles. We propose using non-parametric regression method to construct a reference (baseline) profile. A set of relevant statistics based on distance-based metrics is used to construct a feature vector for a decision tree-based monitoring procedure. The implementation of the proposed approach is illustrated using the profile data obtained from industry. A comparative study shows that the proposed method is capable of detecting the changes in a profile.

主题分类 社會科學 > 管理學
参考文献
  1. Breiman, L.,Friedman, J.,Stone, C. J.,Olshen, R. A.(1984).Classification and Regression Trees.New York:Chapman & Hall/CRC.
  2. Chang, S. I.,Yadama, S.(2010).Statistical process control for monitoring non-linear profiles using wavelet filtering and B-Spline approximation.International Journal of Production Research,48,1049-1068.
  3. Ding, Y.,Zeng, L.,Zhou, S.(2006).Phase I analysis for monitoring nonlinear profiles in manufacturing processes.Journal of Quality Technology,38(3),199-216.
  4. Gardner, M. M.,Lu, J. C.,Gyurcsik, R. S.,Wortman, J. J.,Hornung, B. E.,Heinisch, H. H.(1997).Equipment fault detection using spatial signatures.IEEE Transactions on Components, Packaging and Manufacturing Technology, Part C,20(4),295-304.
  5. Jeong, M. K.,Lu, J. C.,Wang, N.(2006).Wavelet-based SPC procedure for complicated functional data.International Journal of Production Research,44(4),729-744.
  6. Jin, J.,Shi, J.(1999).Feature - preserving data compression of stamping tonnage information using wavelets.Technometrics,41(4),327-339.
  7. Jin, J.,Shi, J.(2001).Automatic feature extraction of waveform signals for in-process diagnostic performance improvement.Journal of Intelligent Manufacturing,12(3),257-268.
  8. Kang, L.,Albin, S. L.(2000).On-line monitoring when the process yields a linear profile.Journal of Quality Technology,32(4),418-426.
  9. Paynabar, K.,Jin, J.(2011).Characterization of non-linear profiles variations using mixed-effect models and wavelets.IIE Transactions,43(4),275-290.
  10. Vaghefi, A.,Tajbakhsh, S. D.,Noorossana, R.(2009).Phase II monitoring of nonlinear profiles.Communications in Statistics-Theory and Methods,38,1834-1851.
  11. Walker, E.,Wright, S. P.(2002).Comparing curves using additive models.Journal of Quality Technology,34(1),118-129.
  12. Williams, J. D.,Woodall, W. H.,Birch, J. B.(2007).Statistical monitoring of nonlinear product and process quality profiles.Quality and Reliability Engineering International,23(8),925-941.
  13. Winistorfer, P. M.,Young, T. M.,Walker, E.(1996).Modeling and comparing vertical density profiles.Wood and Fiber Science,28(1),133-141.
  14. Woodall, W. H.(2007).Current research on profile monitoring.Associação Brasileira de Engenharia de Produção,17(3),420-425.
  15. Woodall, W. H.,Spitzner, D. J.,Montgomery, D. C.,Gupta, S.(2004).Using control charts to monitor process and product quality profiles.Journal of Quality Technology,36(3),309-320.
  16. Young, T. M.,Winistorfer, P. M.,Wang, S.(1999).Multivariate control charts of MDF and OSB vertical density profile attributes.Forest Products Journal,49(5),79-86.
被引用次数
  1. Wang, Yi-Ting,Peng, Wei-Shan,Cheng, Chuen-Sheng,Chen, Pei-Wen(2017).MONITORING OF NONLINEAR PROFILE VARIATIONS USING SUPPORT VECTOR MACHINES.品質學報,24(5),313-323.