题名

Calculating and Plotting Contour Curves of a Response Surface

并列篇名

反應曲面之計算與圖形繪製

DOI

10.6220/joq.2015.22(4).04

作者

陳文魁(Wen-Kuei Chen);胡承方(Cheng-Feng Hu);方聰然(Tsung-Jan Fang)

关键词

反應曲面法 ; 演進作業程序 ; 等效曲線 ; RSM ; EVOP ; contour curve

期刊名称

品質學報

卷期/出版年月

22卷4期(2015 / 08 / 30)

页次

337 - 345

内容语文

英文

中文摘要

生產控制的主要目標是保持最佳的生產過程。為了最佳化流程,通常建議使用演進作業程序(Evolution of Operations Program, EVOP)或反應曲面法(Response Surface Methodology, RSM)。在EVOP時,實驗設計和改進程序同時進行,亦在不干擾正常生產過程中進行。RSM主要是利用實驗設計的順序,以獲得最佳的反應。即使是有RSM結果,但其過程分析仍有個問題產生,即在反應曲線的計算和圖形繪製。通常情況下,反應面曲線是橢圓狀,且要從控制條件曲線得到解決方案,需透過一個隱函數獲得,其求解計算是有反覆又疊代的過程。而本文正是提供一個明確的計算方法,以便容易找到特定反應曲面,並在所有組合條件下求得。

英文摘要

The main goal of manufacturing control is to keep production process optimal all way along. In order to optimize a process, an approach such as evolutionary operation program (EVOP) or response surface methodology (RSM) is usually recommended. In EVOP, experimental designs and improvements are introduced, while an ongoing full-scale manufacturing process keeps producing satisfied results. The concept is that process improvement should not interrupt production. The main idea of RSM is to use a sequence of designed experiments to obtain an optimal response. Though the RSM results can be acquired, the process analyzer still has problems with dealing the calculation and plotting of the contour curve. Normally the response surface curve is oval-like, thus a solution of control conditions to the contour is an implicit function. Its solving calculation involves an iterative procedure. This article is to provide an explicit calculation method to find all condition combinations for a specific contour. Some features of the RSM contour are discussed as well in this article.

主题分类 社會科學 > 管理學
参考文献
  1. Deming, W. E., 1943, Statistical Adjustment of Data, Dover, New York.
  2. Peirce, C. S., 1877, Illustrations of the logic of science, Popular Science Monthly, 12, 1-14.
  3. Peirce, C. S., 1876, Note on the theory of the economy of research, The United States Coast Survey Report, Washington, DC.
  4. Atkinson, A. C.,Donev, A. N.,Tobias, R.(2007).Optimum Experimental Designs, with Sas.New York:Oxford University Press.
  5. Box, G. E. P.,Draper, N. R.(2007).Response Surfaces, Mixtures, and Ridge Analyses.Hoboken, NJ.:Wiley.
  6. Box, G. E. P.,Wilson, K. B.(1951).On the experimental attainment of optimum conditions.Journal of the Royal Statistical Society, Series B,13(1),1-45.
  7. Cornell, J. A.(2002).Experiments with Mixtures: Designs, Models, and the Analysis of Mixture Data.New York.:Wiley.
  8. Goos, P.(2002).The Optimal Design of Blocked and Split-Plot Experiments.New York.:Springer.
  9. Hardin, R. H.,Sloane, N. J. A.(1993).A new approach to the construction of optimal designs.Journal of Statistical Planning and Inference,37(3),339-369.
  10. Kiefer, J. C.(1985).Collected Papers III Design of Experiments.New York.:Springer.
  11. Pukelsheim, F.(2006).Optimal Design of Experiments.Philadelphia, PA.:SIAM.
  12. Sen, P. K.(1996).Design and analysis of experiments: nonparametric methods with applications to clinical trials.Handbook of Statistics,13,91-150.
  13. Yang, K.,El-Haik, B.(2009).Design for Six Sigma: A Roadmap for Product Development.New York:McGraw-Hill.