题名

A Support Vector Regression Based Control Procedure for Detecting a Range of Unknown Mean Shifts

并列篇名

應用支援向量回歸於製程平均數變化之監控

DOI

10.6220/joq.2015.22(5).04

作者

陳佩雯(Pei-Wen Chen);黃國格(Kuo-Ko Huang);李彥儒(Yen-Lu Lee);鄭春生(Chuen-Sheng Cheng)

关键词

累積和管制圖 ; 平均數偏移 ; 支援向量回歸 ; 平均連串長度 ; CUSUM multi-chart ; mean shifts ; support vector regression ; ARL

期刊名称

品質學報

卷期/出版年月

22卷5期(2015 / 10 / 31)

页次

427 - 440

内容语文

英文

中文摘要

累積和管制圖(CUSUM)之績效,主要是由管制圖所要偵測的偏移量大小和預設之參數來決定。由於製程之偏移量通常無法事先得知,因此,我們需要一個有效的管制方法,能夠偵測一個範圍內之平均數偏移。在過去,使用多個累積和管制圖(CUSUM multi-chart)可以達到此種製程目的。本研究以支援向量回歸(support vector regression, SVR)為基礎,建立一個製程平均數之監控方法。此SVR可以監控製程平均數之變化,其輸入向量包含CUSUM管制圖之管制統計量及一些相關的特徵。本研究使用平均連串長度(average run length, ARL)做為績效指標。模擬結果顯示,本研究所提出之 SVR 可以比多個累積和管制圖更快的偵測到一個範圍內之平均數偏移。

英文摘要

Cumulative sum (CUSUM) control scheme is an effective alternative to the Shewhart control chart to detect small process shifts. It is well known that the performance of CUSUM charts mainly depends on the pre-specified size of the shifts in the monitored quality characteristics. Since the shift size is usually unknown in advance, a control method capable of detecting a range of shifts is therefore required. The combination of several CUSUM charts (called CUSUM multi-chart) has been proposed to deal with this problem. This paper presents a support vector regression (SVR) based method to monitor the stability of process mean. The input vector of SVR comprises a mixture of charting statistics and statistical features that allow for the quick detection of a range of mean shifts. The performance of the proposed SVR was evaluated in terms of average run length (ARL). An extensive simulation study shows that the proposed method is better than the CUSUM multi-chart in detecting a range of mean shifts, especially for moderate to large shifts.

主题分类 社會科學 > 管理學
参考文献
  1. Abujiya, M. R.,Riaz, M.,Lee, M. H.(2012).Improving the performance of combined Shewhartcumulative sum control charts.Quality and Reliability Engineering International,29(8),1193-1206.
  2. Borror, C. M.,Montgomery, D. C.,Runger, G. C.(1999).Robustness of the EWMA control chart to non-normality.Journal of Quality Technology,31(3),309-316.
  3. Chang, C.-C.,Lin, C.-J.(2011).LIBSVM: a library for support vector machines.ACM Transactions on Intelligent Systems and Technology,2(3),27.
  4. Cheng, C.-S.,Chen, P.-W.,Huang, K.-K.(2011).Estimating the shift size in the process mean with support vector regression and neural networks.Expert Systems with Applications,38(8),10624-10630.
  5. Cheng, C.-S.,Cheng, H.-P.(2008).Identifying the source of variance shifts in the multivariate process using neural networks and support vector machines.Expert Systems with Applications,35(1-2),198-206.
  6. Chinnam, R. B.(2002).Support vector machines for recognizing shifts in correlated and other manufacturing processes.International Journal of Production Research,40(17),4449-4466.
  7. Han, D.,Tsung, F.,Hu, X.,Wang, K.(2007).CUSUM and EWMA multi-charts for detecting a range of mean shifts.Statistica Sinica,17,1139-1164.
  8. Jiang, W.,Shu, L.,Apley, D. W.(2008).Adaptive CUSUM procedures with EWMA-based shift estimators.IIE Transactions,40,992-1003.
  9. Lucas, J. M.(1982).Combined Shewhart-CUSUM quality control schemes.Journal of Quality Technology,14(2),51-59.
  10. Page, E. S.(1954).Continuous inspection schemes.Biometrika,41,100-115.
  11. Roberts, S. W.(1959).Control chart tests based on geometric moving averages.Technometrics,1(3),239-250.
  12. Ryu, J.-H.,Wan, H.,Kim, S.(2010).Optimal design of a CUSUM chart for a mean shift of unknown size.Journal of Quality Technology,42(3),311-326.
  13. Smola, A. J.,Schölkopf, B.(2004).A tutorial on support vector regression.Statistics and Computing,14(3),199-222.
  14. Sparks, R. S.(2000).CUSUM charts for signalling varying location shifts.Journal of Quality Technology,32(2),157-171.
  15. Sun, R.,Tsung, F.(2003).A kernel-distance-based multivariate control chart using support vector methods.International Journal of Production Research,41(13),2975-5989.
  16. Vapnik, V. N.(1998).Statistical Learning Theory.New York:John Wiley.
  17. Zhao, Y.,Tsung, F.,Wang, Z. J.(2005).Dual CUSUM control schemes for detecting a range of mean shifts.IIE Transactions,37(11),1047-1057.