题名

The Optimal Parameters Design of Multiple Quality Characteristics for the Welding of Aluminum Magnesium Alloy

并列篇名

鋁鎂合金銲接多重品質特性參數最佳化之研究

DOI

10.6220/joq.2016.23(3).04

作者

張志平(Jhy-Ping Jhang)

关键词

多重品質特性 ; 氬銲 ; 類神經網路 ; 理想解類似度順序偏好法 ; 鋁鎂合金 ; multiple quality characteristics ; TIG ; ANN ; TOPSIS ; aluminum magnesium alloy

期刊名称

品質學報

卷期/出版年月

23卷3期(2016 / 06 / 30)

页次

201 - 211

内容语文

英文

中文摘要

鋁鎂合金材料銲接雖然有許多優異機械性質,但在氬銲銲接上其可銲性之條件範圍狹窄會有接合介面和融熔銲道形成硬而脆的介金屬化合物的困難點,一般對於銲接參數設定並沒有公式可循,完全憑藉專家過去的知識和經驗來設定,一旦超出專家經驗範圍,便無法有效設定最佳參數,本研究將發展一套解決鋁鎂合金銲接板參數多重品質特性實驗設計問題,探討銲接非破壞性品質特性─銲道厚度、銲道寬度、深寬比以及破壞性品質特性─拉伸、衝擊值等五個銲接品質特性,再應用理想解類似度順序偏好法 (Technique for Order Preference by Similarity to Ideal Solution) 與倒傳遞類神經網路 (Artificial Neural Network) 搜尋最佳架構,再結完全排列組合法 (All Combinations)找出鋁合金板材銲接參數最佳化。研究結果可提供銲接相關業者改善銲接效率。

英文摘要

The welding of aluminum magnesium alloy has superior mechanical characteristics, but the feasible setting for the welding parameters of the TIG (Tungsten Inter Gas Arc Welding) or GTAW (Gas Tungsten Arc Welding) have many difficulties due to some hard and crisp inter-metallic compounds created within the welding line. Normally, the setting of welding parameters does not have a formula to follow; it usually depends on experts' past knowledge and experiences. Once exceeding the rule of thumb, it becomes to be impossible to set up feasibly the optimal parameters. Consequently, this study will develop a solution to solve the problem of multiple quality characteristics when we weld the aluminum magnesium alloy plates. The select welding quality characteristics are non-destructive testing (Welding thickness, Welding width and Depth-width ratio) and destructive testing (Impact Test and Tensile Test). This paper uses TOPSIS (Technique for Order Preference by Similarity to Ideal Solution), ANN (Artificial Neural Network) and all combinations to find the optimal function framework of parameter design for welding of aluminum magnesium alloy. The research results can improve the welding efficiency for relevant welding industries.

主题分类 社會科學 > 管理學
参考文献
  1. Chang, H. H.(2006).Dynamic multi-response experiments by backpropagation networks and desirability functions.Journal of the Chinese Institute of Industrial Engineers,23(4),280-288.
    連結:
  2. Wikipedia (accessed September, 2013), 2005, File: GTAW.svg. .
  3. Achebo, J. I.(2011).Optimization of GMAW protocols and parameters for improving weld strength quality applying the Taguchi method.Proceedings of the World Congress on Engineering,London, UK:
  4. Bhattacharya, S.,Pal, K.,Pal, S.(2012).Multi-sensor based prediction of metal deposition in pulsed gas metal arc welding using various soft computing models.Applied Soft Computing,12(1),498-505.
  5. Chan, H. L.,Liang, S. K.,Lien, C. T.(2006).A new method for the propagation system evaluation in wireless network by neural networks and genetic algorithm.International Journal of Information Systems for Logistics and Management,2(1),27-34.
  6. Chi, S. C.,Hsu, L. C.(2001).A fuzzy Taguchi experimental method for problems with multi-attribute quality characteristics and its application on plasma arc welding.Journal of the Chinese Institute of Industrial Engineers,18(4),97-110.
  7. Esme, U.,Yiğit, K.,Bayramoğlu, M.,Özgün, S.(2009).Optimization of weld bead geometry in TIG welding process using grey relation analysis and Taguchi method.Materials and technology,43(3),143-149.
  8. Hwang, G. L.,Yoon, K.(1981).Multiple Attributes Decision Making Methods and Applications.New York:Springer-Verlag.
  9. Jhang, J. P.,Chan, H. L.(2001).Application of the Taguchi method to improve the process yield rate for air cleaners in Toyota corona vehicles.International Journal of Reliability, Quality and Safety Engineering,89(3),219-231.
  10. Juang, S. C.,Tarng, Y. S.(2002).Process parameter selection for optimizing the weld pool geometry in the tungsten inert gas welding of stainless steel.Journal of Materials Processing Technology,122(1),33-37.
  11. Lin, H. C.,Su, C. T.,Wang, C. C.,Chang, B. H.,Juang, R. C.(2012).Parameter optimization of continuous sputtering process based on Taguchi methods, neural networks, desirability function, and genetic algorithms.Expert Systems with Applications,39,12918-12925.
  12. Lin, J. L.,Lin, C. L.(2002).The use of the orthogonal array with grey relational analysis to optimize the electrical discharge machining process with multiple performance characteristics.International Journal of Machine Tools & Manufacture,42(2),237-244.
  13. Rumelhart, D. E.,Hinton, G. E.,Williams, R. J.(1986).Learning representations by back-propagating Errors.Nature,323(6088),533-536.
  14. Su, C. T.,Chiu, C. C.,Chang, H. H.(2000).Optimal parameter design via neural network and genetic algorithm.International Journal of Industrial Engineering,7(3),224-231.
  15. Tong, L. I.,Su, C. T.(1997).Optimizing multi-response problems in the Taguchi method by fuzzy multiple attribute decision making.Quality and Reliability Engineering International,13(1),25-34.
  16. Tong, L. I.,Su, C. T.(1997).Multi-response robust design by principal component analysis.Total Quality Management,8(6),409-416.
  17. Tong, L. I.,Wang, C. H.(2000).Optimizing multi-response problems in a dynamic system by grey relational analysis.Journal of the Chinese Institute of Industrial Engineers,17(2),147-156.
  18. Zhang, H. C.,Huang, S. H.(1995).Applications of neural networks in manufacturing: a state-of-the-art survey.International Journal of Production Research,33(3),705-728.
被引用次数
  1. 羅惠瓊,張志平,朱佳荷(2019)。應用類神經網路與基因演算法於鎂合金與銅異種金屬銲接參數最佳化之研究。品質學報,26(6),381-394。
  2. 張志平、胡庭睿(2018)。鎂合金多重品質特性銲接參數最佳化之研究。品質學報,25(2),106-119。
  3. (2024)。應用機器學習於鈦與鎂異種金屬銲接參數最佳化。品質學報,31(1),27-44。