题名

ON-LINE RECOGNITION OF MEAN SHIFTS IN MULTIVARIATE PROCESSES USING A HYBRID ARTIFICIAL BEE COLONY ALGORITHM/CLASSIFIER ENSEMBLE-BASED APROACH

并列篇名

整合蜂群演算法與集成式分類技術於線上即時辨識多變量製程平均值之變動

DOI

10.6220/joq.2016.23(6).02

作者

顧瑞祥(Ruey-Shiang Guh)

关键词

statistical process control ; computational intelligence ; artificial bee colonyalgorithm ; classifier ensemble ; multivariate process ; 統計製程管制 ; 計算型智慧 ; 蜂群演算法 ; 集成式分類 ; 多變量製程

期刊名称

品質學報

卷期/出版年月

23卷6期(2016 / 12 / 31)

页次

375 - 402

内容语文

英文

中文摘要

On-line monitoring several interrelated process (quality) variables in a manufacturing process is an essential task for maintaining and improving the quality and productivity of industrial products. This paper presents a hybrid artificial bee colony (ABC) algorithm/ classifier ensemble-based model for on-line accurate and quick recognition of mean shifts in multivariate processes. The objective of using classifier ensemble method is to improve the recognition capability of the computational intelligence-based classification model for the complicated multivariate process-monitoring task. Integrating the ABC algorithm with classifier ensembles aims for enhancing the classifier ensemble model by optimal selection of component classifiers. A fitness-scaling method is also introduced in this research to overcome the premature convergence problem of the typical ABC algorithm. A comparison between the proposed hybrid model and other computational intelligence-based approaches towards the trivariate process-monitoring scheme is presented. An application of the proposed model using a bivariate dataset from the published literature is also presented to demonstrate the model's on-line usage. The numerical results show that the classifier ensemble-based approaches significantly outperform the traditional single classifier-based approaches with respect to recognition accuracy. The proposed hybrid ABC/classifier ensemble-based model can also perform better than the approaches using merely the classifier ensemble method. With the same false alarm rate, the proposed computational intelligence-based model can outperform other published statistic-based algorithms with respect to the recognition speed.

英文摘要

線上即時監控並維持多個彼此相關的品質變數於一個穩定而可靠的水準上,是多變量統計製程管制 (multivariate statistical process control) 的一個重要功能。本研究整合蜂群演算法與集成式分類技術,提出一個線上即時辨識多變量製程平均值之變動的模式。整合多個單一分類器於一個分類任務的集成式分類技術,在本研究中被用來增進以計算型智慧 (computational intelligence) 為基之製程監控模式的辨識績效;本研究並應用蜂群演算法 (artificial bee colony algorithm) 於集成式分類 (classifier ensemble) 模式中,找出最適當的成份分類器組合,以最佳化多變量製程集成式分類模式的績效,本研究也進一步提出一個新型的適合度調整 (fitness scaling) 方法,以解決傳統蜂群演算法常遭遇的過早收斂 (premature convergence) 問題,以增進蜂群演算法在搜尋最佳值時的能力與速度。本研究所提出的模式在三變量 (trivariate) 製程中辨識平均值變動之模擬績效表現,除了遠優於單一分類器的績效外,也較典型的集成式分類器好。本研究也用一組文獻中的雙變量 (bivariate) 製程之真實數據,測試所提出的多變量製程監控模式,結果顯示,與傳統以統計為基之多變量管制技術相比較,在固定型一誤差 (Type I error) 的基礎下,本研究提出的整合蜂群演算法及集成式分類技術之模式,具有較短的平均串連長度,亦即具有較低的型二誤差 (Type II error)。

主题分类 社會科學 > 管理學
参考文献
  1. Guh, R. S.,Shiue, Y. R.,Yu, F. J.(2014).Real-time monitoring of the quality of multivariate processes with a SVM based classifier ensemble approach.Journal of Quality,21(6),427-454.
    連結:
  2. Karaboga, D., (accessed September, 2015), 2013, JAVA code of the basic ABC algorithm, Intelligent Systems Research Group, Department of Computer Engineering, Erciyes University,Kayseri, Turkey. .
  3. Hotelling, H. H., 1947, Multivariate quality control, Techniques of Statistical Analysis, edited by Eisenhart, C., Hastay, M. W., and Wallis, W. A., McGraw-Hill, New York, 111-184.
  4. Akay, B.,Karaboga, D.(2009).Parameter tuning for the artificial bee colony algorithm.Proceedings of 1st International Conference on Computational Collective Intelligence,WrocBaw, Polan:
  5. Bahamish, H. A. A.,Abdullah, R.,Salam, R. A.(2009).Protein tertiary structure prediction using artificial bee colony algorithm.2009 Third Asia International Conference on Modelling & Simulation,Bali, Indonesia:
  6. Baker, J. E.(1987).Reducing bias and inefficiency in the selection algorithm.Proceedings of the Second International Conference on Genetic Algorithms on Genetic Algorithms and Their Application,Cambridge, MA:
  7. Bersimis, S.,Psarakis, S.,Panaretos, J.(2007).Multivariate statistical process control charts: an overview.Quality and Reliability Engineering International,23(5),517-543.
  8. Brazdil, P.,Gama, J.,Henery, R.(1994).Characterizing the applicability of classification algorithms using meta level learning.Machine Learning: ECML-94, LNAI No. 784,New York:
  9. Breiman, L.(1996).Bagging predictors.Machine Learning,24(2),123-140.
  10. Chang, C. C.,Lin, C. J.(2015).Technical reportTechnical report,Taipei, Taiwan:Department of Computer Science and Information Engineering, National Taiwan University.
  11. Cheng, C. S.,Cheng, H. P.(2008).Identifying the source of variance shifts in the multivariate process using neural networks and support vector machines.Expert Systems with Applications,35(1-2),198-206.
  12. Crosier, R. B.(1988).Multivariate generalizations of cumulative sum quality control schemes.Technometrics,30(3),291-303.
  13. Cunningham, P.,Carney, J.(2000).Diversity versus quality in classification ensembles based on feature selection.Proceedings of 11th European Conference on Machine Learning,Barcelona, Spain:
  14. Dehuri, S.,Ghosh, S.,Cho, S. B.(2011).Integration of Swarm Intelligence and Artificial Neural Network.Singapore:World Scientific.
  15. Dietterich, T. G.(2000).Ensemble methods in machine learning.Proceedings of the First International Workshop on Multiple Classifier Systems,Sardinia, Italy:
  16. Dorigo, M.,Colorni, A.,Maniezzo, V.(1991).Technical ReportTechnical Report,Milano, Italy:Dipartimento di Elettronica, Politecnico di Milano.
  17. Efron, B.,Tibshirani, R.(1993).An Introduction to the Bootstrap.New York:Chapman and Hall.
  18. El-Abd, M.(2012).Performance assessment of foraging algorithms vs. evolutionary algorithms.Information Sciences,182(1),243-263.
  19. Freund, Y.,Schapire, R. E.(1996).Experiments with a new boosting algorithm.Machine Learning: Proceedings of the Thirteenth International Conference,Bari, Italy:
  20. Goldberg, D. E.(1989).Genetic Algorithms in Search, Optimization, and Machine Learning.Reading, MA:Addison-Wesley.
  21. Greenwell, R. N.,Angus, J. E.,Finck, M.(1995).Optimal mutation probability for genetic algorithms.Mathematical and Computer Modelling,21(8),1-11.
  22. Guh, R. S.(2005).A hybrid learning-based model for on-line detection and analysis of control chart patterns.Computers & Industrial Engineering,49(1),35-62.
  23. Guh, R. S.(2007).On-line identification and Quantification of mean shifts in bivariate processes using a neural network-based approach.Quality and Reliability Engineering International,23(3),367-385.
  24. Guh, R. S.,Shiue, Y. R.(2008).An effective application of decision tree learning for on-line detection of mean shifts in multivariate control charts.Computers & Industrial Engineering,55(2),475-493.
  25. Guh, R. S.,Shiue, Y. R.(2009).Fast and accurate recognition of control chart patterns using a time delay neural network.Journal of the Chinese Institute of Industrial Engineers,27(1),61-79.
  26. Hachicha, W.,Ghorbel, A.(2012).A survey of control-chart pattern-recognition literature (1991-2010) based on a new conceptual classification scheme.Computers & Industrial Engineering,63(1),204-222.
  27. Hall, M.,Frank, E.,Holmes, G.,Pfahringer, B.,Reutemann, P.,Witten, I, H.(2009).The WEKA data mining software: an update.ACM SIGKDD Explorations Newsletter,11(1),10-18.
  28. Hawkins, D. M.(1991).Multivariate quality control based on regression-adjusted variables.Technometrics,33(1),61-75.
  29. Hayter, A. J.,Tsui, K. L.(1994).Identification and quantification in multivariate quality control problems.Journal of Quality Technology,26(3),197-208.
  30. Hsu, C. W.,Chang, C. C.,Lin, C. J.(2015).Technical reportTechnical report,Taipei:Department of Computer Science and Information Engineering, National Taiwan University.
  31. Hu, X.(2001).Using rough sets theory and database operations to construct a good ensemble of classifiers for data mining applications.ICDM01, The 2001 IEEE International Conference on Data Miningm,San Jose, CA:
  32. Karaboga, D.(2005).Technical reportTechnical report,Kayseri, Turkey:Computer Engineering Department, Engineering Faculty, Erciyes University.
  33. Karaboga, D.,Akay, B.(2005).(TR06), Technical report(TR06), Technical report,Kayseri, Turkey:Computer Engineering Department, Engineering Faculty, Erciyes University.
  34. Karaboga, D.,Akay, B.(2009).A comparative study of artificial bee colony algorithm.Applied Mathematics and Computation,214(1),108-132.
  35. Karaboga, D.,Akay, B.(2009).Artificial bee colony (ABC), harmony search and bees algorithms on numerical optimization.Proceedings of Innovative Production Machines and Systems Virtual Conference, IPROMS,Kayseri, Turkiye:
  36. Karaboga, D.,Basturk, B.(2008).On the performance of artificial bee colony (ABC) algorithm.Applied Soft Computing,8(1),687-697.
  37. Karaboga, D.,Gorkemli, B.,Ozturk, C.,Karaboga, N.(2014).A comprehensive survey: artificial bee colony (ABC) algorithm and applications.Artificial Intelligence Review,42(1),21-57.
  38. Karaboga, N.(2009).A new design method based on artificial bee colony algorithm for digital IIR filters.Journal of the Franklin Institute,346(4),328-348.
  39. Kennedy, J.,Eberhart, R.(1995).Particle swarm optimization.IEEE International Conference on Neural Networks,4,1942-1948.
  40. Kittler, J.,Hatef, M.,Duin, R. P. W.,Matas, J.(1998).On combining classifiers.IEEE Transactions on Pattern Analysis and Machine Intelligence,20(3),226-239.
  41. Krogh, A.,Vedelsby, J.(1995).Neural network ensembles, cross-section, and active learning.Advances in Neural Information Processing Systems,7,231-238.
  42. Lam, L.(2000).Classifier combinations: implementations and theoretical issues.Lecture Notes in Computer Science,1857,78-86.
  43. Law, A. M.,Kelton, W. D.(1982).Simulation Modelling and Analysis.New York:McGraw-Hill.
  44. Lehman, R. S.(1977).Computer simulation and Modeling: An introduction.London:Lawrence Erlbaum.
  45. Lim, T. S.,Loh, W. Y.,Shih, Y. S.(2000).A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms.Machine Learning,40(3),203-228.
  46. Lin, H.,Kao, Y.,Yang, F.,Wang, P.(2006).Content-based image retrieval trained by Adaboost for mobile application.International Journal of Pattern Recognition and Artificial Intelligence,20(4),525-541.
  47. Lowry, C. A.,Woodall, W. H.,Champ, C. W.,Rigdon, S. E.(1992).Multivariate exponentially weighted moving average control chart.Technometrics,34(1),46-53.
  48. Maimon, O.,Rokach, L.(2004).Ensemble of decision trees for mining manufacturing data sets.Machine Engineering,4(1-2),32-57.
  49. Mason, R. L.,Tracy, N. D.,Young, J. C.(1997).A practical approach for interpreting multivariate T2 control chart signals.Journal of Quality Technology,29(4),396-406.
  50. Michaiewicz, Z.(1994).Genetic Algorithms + Data Structures .Berlin:Springer-Verlag.
  51. Mitchell, T.(1980).(CBM-TR-117), Technical report(CBM-TR-117), Technical report,New Brunswick, NJ:Department of Computer Science, Rutgers University.
  52. Mitchell, T.(1997).Machine Learning.New York:McGraw-Hill.
  53. Opitz, D.,Maclin, R.(1999).Popular ensemble methods: an empirical study.Journal of Artificial Intelligence Research,11,169-198.
  54. Passino, K. M.(2002).Biomimicry of bacterial foraging for distributed optimization and control.IEEE Control Systems Magazine,22(3),52-67.
  55. Quinlan, J. R.(1996).Improved use of continuous attributes in C4.5.Journal of Artificial Intelligence Research,4(1),77-90.
  56. Rokach, L.(2010).Pattern Classification Using Ensemble Methods.Singapore:World Scientific.
  57. Ryan, T. P.(1989).Statistical Methods for Quality Improvement.New York:Wiley.
  58. Suganthan, P. N.,Hansen, N.,Liang, J. J.,Deb, K.,Chen, Y. P.,Auger, A.(2005).Technical reportTechnical report,Kanpur, India:ITT Kanpur.
  59. Tracy, N. D.,Young, J. C.,Mason, R. C.(1992).Multivariate control charts for individual observations.Journal of Quality Technology,24(2),88-95.
  60. Tumer, K.,Ghosh, J.(1996).Error correlation and error reduction in ensemble classifiers.Connection Science,8(3-4),385-404.
  61. Vapnik, V. N.(2000).The Nature of Statistical Learning Theory.New York:Springer.
  62. Wang, C. H.,Kuo, W.,Qi, H.(2007).An integrated approach for process monitoring using wavelet analysis and competitive neural network.International Journal of Production Research,45(1),227-244.
  63. Wang, Y.,Li, B.,Weise, T.(2010).Estimation of distribution and differential evolution cooperation for large scale economic load dispatch optimization of power systems.Information Sciences,180(12),2405-2420.
  64. Western Electric(1958).Statistical Quality Control Handbook.New York:Western Electric.
  65. Wolpert, D. H.(1996).The lack of a priori distinctions between learning algorithms.Neural Computation,8(7),1341-1390.
  66. Wu, B.,Yu, J. B.(2010).A neural network ensemble model for on-line monitoring of process mean and variance shifts in correlated processes.Expert Systems with Applications,37(6),4058-4065.
  67. Xanthopoulos, P.,Razzaghi, T.(2014).A weighted support vector machine method for control chart pattern recognition.Computers & Industrial Engineering,70,134-149.
  68. Yildiz, R.(2012).A comparative study of population-based optimization algorithms for turning operations.Information Sciences,210,81-88.
  69. Yildiz, R.(2013).Optimization of cutting parameters in multi-pass turning using artificial bee colony-based approach.Information Sciences,220,399-407.
  70. Yu, J.,Xi, L.(2009).A hybrid learning-based model for on-line monitoring and diagnosis of out-of-control signals in multivariate manufacturing processes.International Journal of Production Research,47(15),4077-4108.
  71. Yu, J.,Xi, L.,Zhou, X.(2009).Identifying source(s) of out-of-control signals in multivariate manufacturing processes using selective neural network ensemble.Engineering Application of Artificial Intelligence,22(1),141-152.
  72. Zhang, Y.,Wu, L.,Wang, S.(2011).Magnetic resonance brain image classification by an improved artificial bee colony algorithm.Progress In Electromagnetics Research,116,65-79.
  73. Zhou, Z. H.,Wu, J. X.,Tang, W.(2002).Ensembling neural networks: many could be better than all.Artificial Intelligence,137(1-2),239-263.