题名

A CONTROL CHART BASED ON MOVING AVERAGE AND MOVING RATIO FOR MONITORING WEIBULL DATA

并列篇名

應用移動平均與移動比值監控韋伯資料之研究

DOI

10.6220/joq.201808_25(4).0001

作者

陳榮泰(Jung-Tai Chen)

关键词

Weibull distribution ; moving average ; moving ratio ; shape parameter ; scale parameter ; 韋伯分配 ; 移動平均 ; 移動比值 ; 型態參數 ; 尺度參數

期刊名称

品質學報

卷期/出版年月

25卷4期(2018 / 08 / 30)

页次

211 - 240

内容语文

英文

中文摘要

This study focuses on monitoring the joint shifts of the shape parameter c and the scale parameter θ for Weibull data. Previous work on this issue demonstrated an undesired phenomenon, the so-called average run length-biasedness (ARL-biasedness). To eliminate this phenomenon, this study proposes a novel control scheme, the MA-MRa chart: a moving average (MA) chart combined with a moving ratio (MRa) chart. An analytical approach is developed to compute the performance of the proposed chart. A simulation study shows that the analytical approach is reasonably accurate in estimating the performance of the proposed chart. In addition, a comparative study is conducted to show that the proposed chart outperforms the other charts. Finally, an example demonstrates how to apply proposed chart.

英文摘要

本研究旨在探討同時偵測韋伯資料其型態參數c與尺度參數θ之偏移,文獻有關此議題的研究呈現出所謂的平均連串長度偏誤(average run length-biasedness, biasedness)的情形,此一情形將對管制圖的管制效果產生不利的影響。為了解決此問題,本研究提出以一新的移動平均管制圖,搭配移動比值管制圖,來同時管制韋伯資料其型態參數與尺度參數;並提出一解析方法以計算此管制圖之管制績效,模擬結果顯示此解析方法有非常合理的準確性,之後應用此解析方法並配合窮舉搜尋求出此管制圖的管制界限,以供實務界參採。研究結果顯示,在與文獻所提的方法相較之下,本研究有較好的管制效果。最後以一例子,示範如何使用本研究所提出的管制圖。

主题分类 社會科學 > 管理學
参考文献
  1. Chen, J.-T.(2014).A study on using the moving average chart for monitoring time-between-events.Journal of Quality,21(6),479-500.
    連結:
  2. Acosta-Mejia, C. A.,Pignatiello, J. J., Jr.(2000).Monitoring process dispersion without subgrouping.Journal of Quality Technology,32(2),89-102.
  3. Basu, B.,Tiwari, D.,Kundu, D.,Prasad, R.(2009).Is Weibull distribution the most appropriate statistical strength distribution for brittle materials?.Ceramics International,35(1),237-246.
  4. Chen, F. L.,Yeh, C. H.(2011).Economic statistical design for x-bar control charts under non-normal distributed data with Weibull in-control time.Journal of the Operational Research Society,62(4),750-759.
  5. Chen, H.,Cheng, Y.(2007).Non-normality effects on the economic-statistical design of X charts with Weibull in-control time.European Journal of Operational Research,176(2),986-998.
  6. Chen, J.-T.(2014).A Shewhart-type control scheme to monitor Weibull data without subgrouping.Quality and Reliability Engineering International,30(8),1197-1214.
  7. Das, K.(2008).A comparative study of exponential distribution vs. Weibull distribution in machine reliability analysis in a CMS design.Computers & Industrial Engineering,54(1),12-33.
  8. de Vries, A.,Conlin, B. J.(2004).A comparison of the performance of statistical quality control charts in a dairy production system through stochastic simulation.Agricultural Systems,84(3),317-341.
  9. Erto, P.,Pallotta, G.,Park, S. H.(2008).An example of data technology product: a control chart for Weibull processes.International Statistical Review,76(2),157-166.
  10. Guo, B.,Wang, B. X.(2014).Control charts for monitoring the Weibull shape parameter based on type-II censored sample.Quality and Reliability Engineering International,30(1),13-24.
  11. Huang, X.,Pascual, F.(2011).ARL-unbiased control charts with alarm and warning lines for monitoring Weibull percentiles using the first-order statistic.Journal of Statistical Computation and Simulation,81(11),1677-1696.
  12. Johnson, N. L.(1966).Cumulative sum control charts and the Weibull distribution.Technometrics,8(3),481-491.
  13. Khoo, M. B. C.,Xie, M.(2009).A study of time-between-events control chart for the monitoring of regularly maintained systems.Quality and Reliability Engineering International,25(7),805-819.
  14. Kuntman, A.,Ardalı, A.,Kuntman, H.,Kacar, F.(2004).A Weibull distribution-based new approach to represent hot carrier degradation in threshold voltage of MOS transistors.Solid-State Electronics,48(2),217-223.
  15. Linderman, K.,McKone-Sweet, K. E.,Anderson, J. C.(2005).An integrated systems approach to process control and maintenance.European Journal of Operational Research,164(2),324-340.
  16. Liu, J. Y.,Xie, M.,Goh, T. N.(2006).CUSUM chart with transformed exponential data.Communications in Statistics-Theory and Methods,35(10),1829-1843.
  17. Liu, J. Y.,Xie, M.,Goh, T. N.,Chan, L. Y.(2007).A study of EWMA chart with transformed exponential data.International Journal of Production Research,45(3),743-763.
  18. Nichols, M. D.,Padgett, W. J.(2006).A bootstrap control chart for Weibull percentiles.Quality and Reliability Engineering International,22(2),141-151.
  19. Padgett, W. J.,Spurrier, J. D.(1990).Shewhart-type charts for percentiles of strength distributions.Journal of Quality Technology,22(4),283-288.
  20. Pascual, F.(2010).EWMA charts for the Weibull shape parameter.Journal of Quality Technology,42(4),400-416.
  21. Pascual, F.(2013).Individual and moving ratio charts for Weibull processes.Stochastic Orders in Reliability and Risk,New York:
  22. Pascual, F.,Li, S.(2012).Monitoring the Weibull shape parameter by control charts for the sample range of type II censored data.Quality and Reliability Engineering International,28(2),233-246.
  23. Pascual, F.,Nguyen, D.(2011).Moving range charts for monitoring the Weibull shape parameter with single observation samples.Quality and Reliability Engineering International,27(7),905-919.
  24. Pascual, F.,Zhang, H.(2011).Monitoring the Weibull shape parameter by control charts for the sample range.Quality and Reliability Engineering International,27(1),15-25.
  25. Pignatiello, J. J., Jr.,Acosta-Mejia, C. A.,Rao, B. V.(1995).The performance of control charts for monitoring process dispersion.Proceedings of the 4th Industrial Engineering Research Conference,Nashville, TN.:
  26. Ramalhoto, M. F.,Morais, M.(1999).Shewart control charts for the scale parameter of a Weibull control variable with fixed and variable sampling intervals.Journal of Applied Statistics,26(1),129-160.
  27. Surucu, B.,Sazak, H. S.(2009).Monitoring reliability for a three-parameter Weibull distribution.Reliability Engineering & System Safety,94(2),503-508.
  28. Weckman, G. R.,Shell, R. L.,Marvel, J. H.(2001).Modeling the reliability of repairable systems in the aviation industry.Computers & Industrial Engineering,40(1-2),51-63.
  29. Xie, M.,Goh, T. N.,Ranjan, P.(2002).Some effective control chart procedures for reliability monitoring.Reliability Engineering & System Safety,77(2),143-150.
  30. Yang, S. F.,Rahim, M. A.(2005).Economic statistical process control for multivariate quality characteristics under Weibull shock model.International Journal of Production Economics,98(2),215-226.
  31. Zhang, G.,Berardi, V.(1997).Economic statistical design of X control charts for systems with Weibull incontrol times.Computers & Industrial Engineering,32(3),575-586.
  32. Zhang, L.,Chen, G.(2004).EWMA charts for monitoring the mean of censored Weibull lifetimes.Journal of Quality Technology,36(3),321-328.