题名

A TEST-BED TO COMPARE ALTERNATIVE BAYESIAN REGRESSION FORMULATIONS AND AN APPLICATION OF CNC MILLING ROUGHNESS MINIMIZATION

并列篇名

以測試平臺檢驗與評估貝氏迴歸模型:以CNC製造木製圓盤表面粗糙度最小化為例

DOI

10.6220/joq.201808_25(4).0002

作者

曾世賢(Shih-Hsien Tseng);康煌易(Huang-Yi Kang);陳曉瑩(Hsiao-Yin Chen)

关键词

Bayesian regression ; Bayesian priors ; Markov chain Monte Carlo ; furniture systems design ; 貝氏迴歸 ; 貝氏先驗 ; 馬可夫鏈蒙地卡 ; 家具系統設計

期刊名称

品質學報

卷期/出版年月

25卷4期(2018 / 08 / 30)

页次

241 - 257

内容语文

英文

中文摘要

In this paper, we proposed Bayesian regression, four commonly used priors, and a test-bed methodology for evaluating empirical modeling techniques. This method was applied to evaluate and fine-tune several of the most popular Bayesian regression formulations. It provides a systematic analysis of the robustness of alternative Bayesian regression priors. Based on the result, we concluded that stochastic search variable selection (SSVS), which relies on a mixture of normal priors and Gibbs sampling, performed better than other priors, and handled regression problems such as bias, multicollinearity, and design moment better than other methods. To illustrate the proposed methods, we applied a tuned Bayesian regression formulation to minimize the surface roughness of a wooden plate.

英文摘要

本研究提出以實驗設計法建構測試平台以檢驗貝氏迴歸中四類常用之先驗假設其建模技術優劣。本研究利用此測試平台評估和調整相對較熱門之貝氏迴歸公式中有關先驗之假設,並提供了貝氏迴歸先驗的穩健性的系統分析。根據研究結果本研究得出結論為隨機搜索變量選擇(stochastic search variable selection, SSVS)在吉氏抽樣的混合之下,處理貝氏迴歸的問題中面臨如模型偏誤,多重共線性和資料分布型態不均時,相對其他先驗假設法表現更為穩健。為說明本研究提出之方法,本研究以隨機搜索變量選擇方式探討家具廠製造木製圓盤最小化木板的表面粗糙度相關參數之設定。

主题分类 社會科學 > 管理學
参考文献
  1. Tseng, S.-H.,Hsu, Y.(2016).A two model approach for regression diagnostics applied to furniture design.Journal of Quality,23(1),1-24.
    連結:
  2. Allen, T. T.(2006).Introduction to Engineering Statistics and Six Sigma.London:Springer.
  3. Allen, T. T.,Tseng, S.-H.(2011).Variance plus bias optimal response surface designs with qualitative factors applied to stem choice modeling.Quality and Reliability Engineering International,27(8),1199-1210.
  4. Allen, T. T.,Yu, L.,Schmitz, J.(2003).An experimental design criterion for minimizing meta-model prediction errors applied to die casting process design.Journal of the Royal Statistical Society: Series C (Applied Statistics),52(1),103-117.
  5. Balic, J.,Kovacic, M.,Vaupotic, B.(2006).Intelligent programming of CNC turning operations using genetic algorithm.Journal of Intelligent Manufacturing,17(3),331-340.
  6. Beattie, S. D.,Fong, D. K. H.,Lin, D. K. J.(2002).A two-stage Bayesian model selection strategy for supersaturated designs.Technometrics,44(1),55-63.
  7. Berry, D. A.,Chaloner, K. M.,Geweke, J. K.(1996).Bayesian Analysis in Statistics and Econometrics: Essays in Honor of Arnold Zellner John,New York:
  8. Cao, S. K.,Song, L.,Dong, K.,Song, K. F.,Sui, Z. M.(2012).Research on path optimization technology for free-form surface five-axis NC machining.Advanced Materials Research,443-444,202-208.
  9. Chantarat, N.,Allen, T. T.,Ferhatosmanoglu, N.,Bernshteyn, M.(2006).A combined array approach to minimise expected prediction errors in experimentation involving mixture and process variables.International Journal of Industrial and Systems Engineering,1(1-2),129-147.
  10. Chipman, H.(1996).Bayesian variable selection with related predictors.The Canadian Journal of Statistics,24(1),17-36.
  11. Delouille, V. A.(1998).Canterbury, UK,University of Kent.
  12. DuMouchel, W.,Jones, B.(1994).A simple Bayesian modification of D-optimal designs to reduce dependence on an assumed model.Technometrics,36(1),37-47.
  13. Gawroński, T.(2013).Optimization of CNC routing operations of wooden furniture parts.The International Journal of Advanced Manufacturing Technology,67(9-12),2259-2267.
  14. George, E. I.,McCulloch, R. E.(1993).Variable selection via Gibbs sampling.Journal of the American Statistical Association,88(423),881-889.
  15. Gilks, W. R.,Richardson, S.,Spiegelhalter, D. J.(1996).Markov Chain Monte Carlo in Practice.London:Chapman and Hall.
  16. Hamada, M.,Wu, C. F. J.(1992).Analysis of designed experiments with complex aliasing.Journal of Quality Technology,24(3),130-137.
  17. Hillier, F. S.,Lieberman, G. J.(2012).Introduction to Operations Research.Hightstown, NJ.:McGraw-Hill.
  18. Huang, D.,Allen, T. T.(2005).Design and analysis of variable fidelity experimentation applied to engine valve heat treatment process design.Journal of the Royal Statistical Society: Series C (Applied Statistics),54(2),1-21.
  19. Iskra, P.,Hernández, R. E.(2010).Toward a process monitoring and control of a CNC wood router: development of an adaptive control system for routing white birch.Wood and Fiber Science,42(4),523-535.
  20. Munro, I.,Mingers, J.(2002).The use of multimethodology in practice-results of a survey of practitioners.Journal of the Operational Research Society,53(4),369-378.
  21. Raju, K. V. M. K.,Janardhana, G. R.,Kumar, P. N.,Rao, V. D. P.(2011).Optimization of cutting conditions for surface roughness in CNC end milling.International Journal of Precision Engineering and Manufacturing,12(3),383-391.
  22. Rawangwong, S.,Chatthong, J.,Rodjananugoon, J.(2011).The study of proper conditions in face coconut wood by CNC milling machine.Proceedings of the 2011 IEEE International Conference on Quality and Reliability,Bangkok, Thailand:
  23. Rossi, P. E.,Allenby, G. M.,McCulloch, R. E.(2006).Bayesian Statistics and Marketing.New York:Wiley.
  24. Routara, B. C.,Bandyopadhyay, A.,Sahoo, P.(2009).Roughness modeling and optimization in CNC end milling using response surface method: effect of workpiece material variation.The International Journal of Advanced Manufacturing Technology,40(11-12),1166-1180.
  25. Sun, Y.,Li, D.,Ren, F.,Guo, D.(2008).Predictive force model based variable feedrate scheduling for highefficiency NC machining.Proceedings of the 2008 International Conference on Intelligent Robotics and Applications,Berlin, Germany: