题名

A STUDY ON IMPROVING DECISION QUALITY OF PERISHABLE COMMODITY ORDERING FOR MULTI-SCENARIO

并列篇名

提升多情境下易腐性商品訂購決策品質之研究

DOI

10.6220/joq.201906_26(3).0002

作者

黃允成(Yun-Cheng Huang);賴旻儀(Min-Yi Lai);張欣頤(Shin-Yi Chang)

关键词

perishable commodity ; optimal order quantity ; multi-scenario ; 易腐性商品 ; 最佳訂購量 ; 多情境

期刊名称

品質學報

卷期/出版年月

26卷3期(2019 / 06 / 30)

页次

156 - 185

内容语文

英文

中文摘要

Perishable commodity is commodity that has time limit for storage; and its expiration date is often shorter than ordinary commodity. Therefore, its management should be stricter. Too many or too little amount of commodity was ordered could both cause business loss. Traditionally, only single scenario was discussed. However in reality, the demand is affected by various scenarios like the weather conditions or environmental factors and so on. Thus, this study focused on perishable commodity ordering strategy under multi-scenario. Furthermore, the sensitivity analysis was carried out to test how the main parameters affect the total expectation profit and the decision variable. Finally, a numerical example was demonstrated to verify the feasibility of the proposed model; and some conclusions were drawn for practical applications and future studies.

英文摘要

易腐商品是有保存期限之商品,其有效期通常比一般商品短。因此,其管理應更為嚴格。不論訂購數量太多或太少,都可能導致商業損失。傳統上,只討論單一情境,然而,實際上,需求數量常受到諸如天氣條件或環境因素等各種情況之影響,很難以單一情境加以論斷。因此,本研究聚焦在多情境下易腐商品之訂購策略。此外,透過敏感度分析以探討主要參數對總期望利潤和決策變數之影響。最後,經由數值範例驗證本研究所提數學模型之可行性,並提出具體結論,以供實務應用和後續研究之參考。

主题分类 社會科學 > 管理學
参考文献
  1. Adachi, Y.,Nose, T.,Kuriyama, S.(1999).Optimal inventory control policy subject to different selling prices of perishable commodities.International Journal of Production Economics,60-61,389-394.
  2. Aksoya, H. K.,Gunera, A.(2015).A bayesian approach to demand estimation.Procedia Economics and Finance,26,777-784.
  3. Castañeda, J. A.,Gonçalves, P.(2018).Ordering behavior in a newsstand experiment.International Journal of Production Economics,197,186-196.
  4. Chen, H.-K.,Hsueh, C.-F.,Chang, M.-S.(2009).Production scheduling and vehicle routing with time windows for perishable food products.Computers & Operations Research,36(7),2311-2319.
  5. Chen, S.-P.,Ho, Y.-H.(2013).Optimal inventory policy for the fuzzy newsboy problem with quantity discounts.Information Sciences,228,75-89.
  6. Chiu, H. N.(1995).An approximation to the continuous review inventory model with perishable items and lead times.European Journal of Operational Research,87(1),93-108.
  7. Dye, C.-Y.,Ouyang, L. Y.(2005).An EOQ model for perishable items under stock-dependent selling rate and time-dependent partial backlogging.European Journal of Operational Research,163(3),776-783.
  8. Ferguson, M.,Jayaraman, V.,Souza, G. C.(2007).Note: an application of the EOQ model with nonlinear holding cost to inventory management of perishables.European Journal of Operational Research,180(1),485-490.
  9. Giri, B. C.,Chaudhuri, K. S.(1998).Deterministic models of perishable inventory with stock-dependent demand rate and nonlinear holding cost.European Journal of Operational Research,105(3),467-474.
  10. Goyal, S. K.,Giri, B. C.(2001).Recent trends in modeling of deteriorating inventory.European Journal of Operational Research,134(1),1-16.
  11. Ignaciuk, P.(2012).Dead-time compensation in continuous-review perishable inventory systems with multiple supply alternatives.Journal of Process Control,22(5),915-924.
  12. Ignaciuk, P.,Bartoszewicz, A.(2012).LQ optimal sliding-mode supply policy for periodic-review perishable inventory systems.Journal of the Franklin Institute,349(4),1561-1582.
  13. Ishii, H.,Nose, T.(1996).Perishable inventory control with two types of customers and different selling prices under the warehouse capacity constraint.International Journal of Production Economics,44(1–2),167-176.
  14. Jia, J.,Hu, Q.(2011).Dynamic ordering and pricing for a perishable goods supply chain.Computers & Industrial Engineering,60(2),302-309.
  15. Jiang, W.,Chang, C.-T.,Teng, J.-T.,Lai, K.-K.(2017).Optimal order quantity and selling price over a product life cycle with deterioration rate linked to expiration date.International Journal of Production Economics,193,343-351.
  16. Kalpakam, S.,Shanthi, S.(2000).A perishable system with modified base stock policy and random supply quantity.Computers & Mathematics with Applications,39(12),79-89.
  17. Khouja, M.(1999).The single-period (news-vendor) problem: literature review and suggestions for future research.Omega,27(5),537-553.
  18. Lee, C.-M.(2008).A Bayesian approach to determine the value of information in the newsboy problem.International Journal of Production Economics,112(1),391-402.
  19. Li, J.,Cheng, T. C. E.,Wang, S.(2007).Analysis of postponement strategy for perishable items by EOQ based models.International Journal of Production Economics,107(1),31-38.
  20. Liao, H.-C.,Tsai, C.-H.,Su, C. T.(2000).An inventory model with deteriorating items under inflation when a delay in payment is permissible.International Journal of Production Economics,63(2),207-214.
  21. Ouyang, L.-Y.,Wu, K.-S.,Yang, C. T.(2006).A study on an inventory model for non-instantaneous deteriorating items with permissible delay in payments.Computers & Industrial Engineering,51(4),637-651.
  22. Padmanabhan, G.,Vrat, P.(1995).EOQ models for perishable items under stock dependent selling rate.European Journal of Operational Research,86(2),281-292.
  23. Raafat, F.(1991).Survey of literature on continuously deteriorating inventory models.Journal of the Operational Research Society,42(1),27-37.
  24. Serel, D. A.(2008).Inventory and pricing decisions in a single-period problem involving risky supply.International Journal of Production Economics,116(1),115-128.
  25. van Donselaar, K.,van Woensel, T.,Broekmeulen, R.,Fransoo, J.(2006).Inventory control of perishables in supermarkets.International Journal of Production Economics,104(2),462-472.
  26. Weiss, H. J.(1982).Economic order quantity models with nonlinear holding costs.European Journal of Operational Research,9(1),56-60.
  27. White, C. C., III.,Cheong, T.(2012).In-transit perishable product inspection.Transportation Research Part E: Logistics and Transportation Review,48(1),310-330.