题名

雙向最適選擇策略之研究

并列篇名

A STUDY ON TWO-WAY OPTIMAL SELECTION STRATEGY

DOI

10.6220/joq.202006_27(3).0001

作者

黃允成(Yun-Cheng Huang);張欣頤(Xin-Yi Chang);侯宜璇(Yi-Xuan Hou)

关键词

雙向決策 ; GS演算法 ; 遞延接受 ; two-way decision making ; GS algorithm ; deferred acceptance

期刊名称

品質學報

卷期/出版年月

27卷3期(2020 / 06 / 30)

页次

137 - 155

内容语文

繁體中文

中文摘要

個人或組織在進行決策選擇時,若被選擇對象亦具有可選擇性時,稱為雙向決策選擇行為。在雙向選擇之情境下,雙方應如何進行最適選擇行為,為本研究欲探討之主題。Gale and Shapley(1962)提出Gale-Shapley演算法(GS演算法)該演算法可讓雙方決策者找到最適之配對。由於該法具有遞延接受之特性,因此本研究將運用GS演算法建構雙向最適選擇策略模型,並證明主動出擊者具有先發優勢。

英文摘要

When an individual or an organization makes a decision choice, if the selected object is also optional, it is called a two-way decision making behavior. In the context of two-way choice, how the two sides should conduct the optimal choice behavior is the subject of this research. Gale and Shapley (1962) proposed the Gale-Shapley algorithm (GS algorithm), which allows both-side decision makers to find the optimal pairing. Because the method has the characteristics of deferred acceptance, this study will use the GS algorithm to construct a two-way optimal selection strategy model, and prove that the active attacker has a first-mover advantage.

主题分类 社會科學 > 管理學
参考文献
  1. Afacan, M. O.(2018).The object allocation problem with random priorities.Games and Economic Behavior,110,71-89.
  2. Bando, K.(2014).A modified deferred acceptance algorithm for many-to-one matching markets with externalities among firms.Journal of Mathematical Economics,52,173-181.
  3. de Arruda, A. C.,Li, W.,Milea, V.(2015).A new airport collaborative decision making algorithm based on deferred acceptance in a two-sided market.Expert Systems With Applications,42(7),3539-3550.
  4. Gale, D.,Shapley, L. S.(1962).College admissions and the stability of marriage.Mathematical Association of America,69(1),9-15.
  5. Jung, T.,Kwon, C.(2011).Retailer-supplier matching: an application of the deferred acceptance algorithm.International Journal of Services Operations and Informatics,6(3),248-258.
  6. Kiran, S. V.,Devi, S. P.,Manivannan, S.(2016).Incentive compatible E-mandi with large scale consumer producer matching using big data based on gale-shapely algorithm for perishable commodities SCM.Procedia Computer Science,87,215-220.
  7. Klijn, F.,Pais, J.,Vorsatz, M.(2019).Static versus dynamic deferred acceptance in school choice: theory and experiment.Games and Economic Behavior,113,147-163.
  8. Narayanan, S. L.,Vinukiran, S.(2016).E-vision decision support system implementation to match donors and recipients based on Gale-Shapely algorithm for cornea transplantation surgery.Procedia Computer Science,87,74-79.
  9. Pereyra, J. S.(2013).A dynamic school choice model.Games and Economic Behavior,80,100-114.
  10. Quesnel, F.,Desaulniers, G.,Soumis, F.(2017).A new heuristic branching scheme for the crew pairing problem with base constraints.Computers & Operations Research,80,159-172.
  11. Saaty, T. L.(1994).Highlights and critical points in the theory and application of the analytic hierarchy process.European Journal of Operational Research,74(3),426-447.
  12. Saaty, T. L.(1986).Resolution of retributive conflicts.IFAC Proceedings Volumes,19(8),91-94.