题名

探討醫院異常事件通報病患發生跌倒事件之分析-以中部某區域教學醫院為例

并列篇名

Factors Influencing Inpatient Falls: An Analysis of the Medical Incident Reporting System-Using Data From a Regional Teaching Hospital in Central Taiwan

DOI

10.6220/joq.202204_29(2).0001

作者

李晏華(Yan-Hua Li);黃冠凱(Kuan-Kai Huang);吳信宏(Hsin-Hung Wu)

关键词

異常事件通報系統 ; 跌倒事件 ; 關聯規則 ; critical incident reporting system ; falls ; association rule

期刊名称

品質學報

卷期/出版年月

29卷2期(2022 / 04 / 30)

页次

99 - 117

内容语文

繁體中文

中文摘要

本研究以中部某區域教學醫院發生跌倒異常事件通報為例,探討哪些情況下跌倒將會發生以及病患跌倒後傷害程度之影響,作為今後預防跌倒事件之參考。因此本次研究藉由從「人」、「事」、「時」、「地」相關層面進行分析探討,蒐集資料為個案醫院2016年至2018年的異常事件通報系統(critical incident reporting system)的資料庫篩選出374筆有效資料。研究變項包括病患的年齡、性別、班別、科別、有無陪伴者、事件發生過程中有關聯的人員、跌倒的因素、跌倒後有無傷害、大小夜班及跌倒的地點。利用Apriori演算法的關聯規則(association rule)將提升度設定為大於1,信賴度設定為80%,支持度設定為5%,篩選過後得出32條規則並進一步整理成11條通則。從整理出來的11條通則的內容結果發現,當跌倒事件發生在白班的情況下,通常年齡在21~35歲的男性且有陪伴者或物理、職能治療人員在旁,與事件發生後對病人無傷害,跌倒相關因素為病患生理與行為,以及嚴重度(severity assessment code)評估為第四級。當跌倒發生在年齡65歲以上,病患性別為女性且有陪伴者或護理人員在旁,表明雖然有陪伴者或護理人員,但不表示病患絕對安全,跌倒單位在內科與事發後對病患是有傷害,跌倒相關因素為病人生理與行為,地點發生在一般病房(含病房走廊、浴室、護理站區域),時間會在大夜班以及嚴重度評估為第四級。當跌倒容易發生在男性病患的情況下,通常年齡在21~35歲且沒有陪伴者,跌倒相關因素為環境和病患生理與行為,地點發生在一般病房(含病房走廊、浴室、護理站區域),時間會在白班。

英文摘要

This study uses the medical incident reporting system in a regional teaching hospital in central Taiwan to analyze critical factors influencing inpatient falls in terms of people, event, time, and place. The research intends to explore how inpatient falls will occur and the impact of the degree of injury after falls, which can become a reference for the prevention of falls events in the future. The data with 374 transactions from 2016 to 2018 in this case regional teaching hospital from the medical incident reporting system were used. This study uses the following variables including age, gender, division, companions, people involved in the event, factors of falls, injuries after falls, night shifts, and places of falls. Apriori algorithm was applied to generate 32 rules which can be further organized into eleven general rules. The parameters of lift, confidence, and support are set to greater than 1, 80%, and 5%, respectively. Based on these 11 generalized rules, the results of the study showed that the inpatient falls occurs in the day shift, males between ages of 21 and 35, with companions or physical therapists with no harm to the patient. The relevant factors of falls are the physiology and behavior of the patient, and the severity is 4. The falls occurs at the age of 65 and above female patients with companions or nurses, indicating that the presence of a companion or caregiver does not mean that the patient is absolutely safe. The patient who falls in the division of general medicine is injured. The related factors are the physiology and behavior of the patient. The falls is in the general ward and in the night shift, and the severity is 4. The falls occurs in male patients between ages of 21 and 35 and have no companion. The related factors of falls are the environment and the physiology and behavior of the patients. The locations are in the general ward and the time is in the day shift.

主题分类 社會科學 > 管理學
参考文献
  1. 林雅嫻,王文甫,呂郁蕙,張凱茗,陳富滿,葉瓊鈺(2020)。女性阿茲海默症病人之照護目標組合的研究:以中部某醫學中心為例。品質學報,27(1),1-25。
    連結:
  2. 張鈺姍,蔡東杰,陳明招,陳泰瑞(2005)。住院老年精神疾病患者跌倒之危險因子。臺灣精神醫學,19(3),216-224。
    連結:
  3. 陳玟均,王文甫,呂郁蕙,張凱茗,陳富滿,葉瓊鈺(2019)。利用Apriori演算法探討失智症患者於照護者壓力之影響:以中部醫學中心為例。品質學報,26(6),395-418。
    連結:
  4. 葉進儀,林彣珊,郭文熙(2008)。應用以約定值為基礎之演算法於關聯規則探勘。資訊管理學報,15(4),123-149。
    連結:
  5. 謝雅惠,張偉洲,黃建民(2012)。醫療異常事件通報系統之病人跌倒事件分析。醫務管理期刊,13(1),20-31。
    連結:
  6. 龔旭陽,林美賢,林靖祐,賴威光(2010)。針對重要稀少性資料之一種有效率關聯式探勘方法設計。資訊管理學報,17(1),133-155。
    連結:
  7. Agrawal, R.,Srikant, R.(1994).Fast algorithms for mining association rules in large databases.Proceedings of the 20th International Conference on Very Large Data Bases,San Francisco, CA:
  8. Barach, P.,Small, S.D.(2000).Reporting and preventing medical mishaps: lessons from non-medical near miss reporting systems.British Medical Journal,320(7237),759-763.
  9. Bergen, G.,Stevens, M. R.,Burns, E. R.(2016).Falls and fall injuries among adults aged ≥ 65 years—United States.Morbidity and Mortality Weekly Report,65(37),993-998.
  10. Callis, N.(2016).Falls prevention: identification of predictive fall risk factors.Applied Nursing Research,29,53-58.
  11. Campbell, A. J.,Robertson, M. C.,Gardner, M. M.,Norton, R. N.,Buchner, D. M.(1999).Psychotropic medication withdrawal and a home-based exercise program to prevent falls: a randomized, controlled trial.Journal of the American Geriatrics Society,47(7),850-853.
  12. Colling, J.,Park, D.(1983).Home, safe home.Journal of Gerontological Nursing,9(3),175-192.
  13. Dunn, D.(2003).Incident reports—correcting processes and reducing errors.AORN Journal,78(2),211-233.
  14. Han, J.,Kamber, M.,Pei, J.(2011).Data Mining: Concepts and Techniques.San Francisco, CA:Morgan Kaufmann.
  15. Jhang, K. M.,Chang, M. C.,Lo, T. Y.,Lin, C. W.,Wang, W. F.,Wu, H. H.(2019).Using the Apriori algorithm to classify the care needs of patients with different types of dementia.Patient Preference and Adherence,13,1899-1912.
  16. Joint Commission, (accessed October, 2019), n.d., High reliability healthcare, .
  17. Khan, M. S.,Muyeba, M.,Coenen, F.(2008).A weighted utility framework for mining association rules.Proceedings of the 2008 Second UKSIM European Symposium on Computer Modelling and Simulation,Liverpool, UK:
  18. Kohn, L. T.(Ed.),Corrigan, J. M.(Ed.),Donaldson, M. S.(Ed.)(2000).To Err is Human: Building a Safer Health System, National Academy Press.Washington, DC.:National Academy Press.
  19. Lee, Y.-C.,Huang, C.-H.,Lin, Y.-C.,Wu, H.-H.(2017).Association rule mining to identify critical demographic variables influencing the degree of burnout in a regional teaching hospital.TEM Journal,6(3),497-502.
  20. Lord, S. R.,Close, J. C. T.(2018).New horizons in falls prevention.Age and Ageing,47(4),492-498.
  21. Morello, R. T.,Soh, S.-E.,Behm, K.,Egan, A.,Ayton, D.,Hill, K.(2019).Multifactorial falls prevention programmes for older adults presenting to the emergency department with a fall: systematic review and meta-analysis.Injury Prevention,25(6),557-564.
  22. Sattin, R. W.(1992).Falls among older persons: a public health perspective.Annual Review of Public Health,13,489-508.
  23. Tinetti, M. E.,Speechley, M.,Ginter, S. F.(1988).Risk factors for falls among elderly persons living in the community.The New England Journal of Medicine,319(26),1701-1707.
  24. World Health Organization(2008).WHO Global Report on Falls Prevention in Older Age.Geneva, Switzerland:World Health Organization.
  25. Yan, G.-J.,Wang, W.-F.,Jhang, K.-M.,Lin, C.-W.,Wu, H.-H.(2019).Association between patients with dementia and high caregiving burden for caregivers from a medical center in Taiwan.Psychology Research and Behavior Management,12,55-65.
  26. 石崇良,侯勝茂,薛亞聖,鍾國彪,蘇喜,廖熏香(2005)。異常事件通報系統與通報障礙。臺灣醫學,9(1),63-67。
  27. 林俊榮,王麗芬,王淑莉,張立興,許香蘭(2009)。以Apriori演算法建構季節流行病關係模型。光田醫學雜誌,4(8),99-108。
  28. 施益湋,何宏祥,蔡永裕,蔡哲福(2014)。改善復健病人跌倒發生率之成效。澄清醫護管理雜誌,10(4),62-71。
  29. 施惟雰(2017)。彰化,國立彰化師範大學。
  30. 洪聖惠,秦文靜,黃清水,陳小蓮,鄭嘉惠,陳韋君(2008)。病人安全通報系統跌倒事件分析。醫院,41(1),42-53。
  31. 財團法人醫院評鑑暨醫療品質策進會,(accessed March, 2020),2014,臺灣病人安全通報系統2014年年報,。 2015120109275506997
  32. 財團法人醫院評鑑暨醫療品質策進會,(accessed March, 2020),n.d.,臺灣病人安全通報系統沿革,。 1&MmmID
  33. 財團法人醫院評鑑暨醫療品質策進會,(accessed August, 2019),2019,通報內容,。 1&MmmID
  34. 1&MmmID 財團法人醫院評鑑暨醫療品質策進會,(accessed March, 2020),2018,醫院病安目標,。 621273300317401756&MSID
  35. 馬秀玲(2013)。高雄,高雄醫學大學。
  36. 莊蕙琿,黃焜煌,王素美,劉穗蘭(2008)。住院病患跌倒事件分析—以某區域教學醫院為例。澄清醫護管理雜誌,4(3),23-28。
  37. 陳垂呈(2006)。有效率探勘關聯規則之演算法。科學與工程技術期刊,2(4),83-91。
  38. 陳清惠(1991)。住院病患跌倒危險因素之探討。榮總護理,8(3),305-313。
  39. 黃郁如,鄭婷婷,呂韻如,郭珮嫆,洪毅芳(2009)。降低精神科急性病房病患跌倒發生率之改善專案。嘉基護理,9(2),18-27。
  40. 臺北榮總員山分院,(accessed October, 2019),2019,預防跌倒,
  41. 臺南市政府衛生局,(accessed October, 2019),2016,預防跌倒10知,
  42. 臺灣醫院協會,(accessed August, 2019),2019,名詞定義,。 201004291616302&t
  43. 蔡燿州,陳政友,蔡明世(2010)。嘉義縣某地區醫院護理之家及精神病房慢性住院病人跌倒傷害嚴重程度相關因素研究。健康促進暨衛生教育雜誌,30,87-107。
  44. 盧致誠,陸言,袁得峻(2017)。探討良性攝護腺增生病人採不同術式後的併發症與術前合併症之關聯。醫療資訊雜誌,26(2),1-22。
  45. 顧艷秋,張惠敏(2011)。比較不同通報方式之跌倒通報率。榮總護理,28(1),39-46。