题名

A Prediction of the Broadband Internet Customer Churn Using Support Vector Machine

并列篇名

基於支持向量機的寬頻網路客戶流失預測

DOI

10.6220/joq.202302_30(1).0001

作者

Pei-Hsi Lee(李佩熹);Yihui Chen(陳翌惠)

关键词

broadband internet ; customer churn ; support vector machine ; genetic algorithm ; 寬頻網路 ; 客戶流失 ; 支持向量機 ; 遺傳算法

期刊名称

品質學報

卷期/出版年月

30卷1期(2023 / 02 / 28)

页次

1 - 12

内容语文

英文;繁體中文

中文摘要

In the fiercely competitive broadband internet market in China, the telecom companies are facing a large amount of customer churn. If they can predict the loss of customers and propose a method to prevent it, that will help these telecom companies improve their competitive advantage. This study uses support vector machine (SVM) to predict the loss of broadband internet customers, and proposes countermeasures. The SVM is trained and tested with the real data provided by the telecom company, and its accuracy values is higher than the values of back-propagation neural network. This study also proposes a process to illustrate the use of the SVM method for predicting the customer churn, and implement the countermeasures based on the prediction results of SVM.

英文摘要

在競爭激烈的中國寬頻網路市場,電信企業面臨著大量的客戶流失。如果他們能夠預測客戶流失並提出預防方法,將有助於這些電信公司提高競爭優勢。本研究使用支持向量機(support vector machine, SVM)來預測寬頻網路客戶的流失,並提出對策。SVM使用電信公司提供的真實數據進行訓練和測試,其準確度值高於反向傳播神經網絡(back-propagation neural network)。本研究提出了一個流程來說明使用SVM方法預測客戶流失,並根據SVM的預測結果實施對策。

主题分类 社會科學 > 管理學
参考文献
  1. Albuquerque, P.,Alfinito, S.,Torres, C. V.(2015).Support vector clustering for customer segmentation on mobile TV service.Communications in Statistics-Simulation and Computation,44(6),1453-1464.
  2. Bi, J.-W.,Liu, Y.,Fan, Z.-P.,Cambria, E.(2019).Modelling customer satisfaction from online reviews using ensemble neural network and effect-based Kano model.International Journal of Production Research,57(22),7068-7088.
  3. Cao, J.,Jiang, Z.,Wang, K.(2017).Customer demand prediction of service-oriented manufacturing using the least square support vector machine optimized by particle swarm optimization algorithm.Engineering Optimization,49(7),1197-1210.
  4. Chang, C.-C. and Lin, C.-J., (accessed December, 2019), 2011, LIBSVM—a library for support vector machines, .
  5. Chen, S.-x,Wang, X.-k.,Zhang, H.-y.,Wang J.-q.(2021).Customer purchase prediction from the perspective of imbalanced data: a machine learning framework based on factorization machine.Expert Systems with Applications,173,114756.
  6. Chen, T.-H.(2020).Do you know your customer? Bank risk assessment based on machine learning.Applied Soft Computing,86,105779.
  7. Cheong, S.,Oh, S. H.,Lee, S.-Y.(2004).Support vector machines with binary tree architecture for multi class classification.Neural Information Processing—Letters and Reviews,2(3),47-51.
  8. Chicco, D.,Jurman, G.(2020).The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation.BMC Genomics,21,66.
  9. Faruto,(accessed December, 2019),2011,[教程] (更新libsvm-faruto版本歸來) libsvm-3.1-[FarutoUltimate3.1Mcode],
  10. Hew, K. F.,Hu, X.,Qiao, C.,Tang, Y.(2020).What predicts student satisfaction with MOOCs: a gradient boosting trees supervised machine learning and sentiment analysis approach.Computers & Education,145,103724.
  11. Huang, C.-L.,Wang, C.-J.(2006).A GA-based feature selection and parameters optimization for support vector machines.Expert Systems with Applications,31(2),231-240.
  12. Hwang, S.,Kim, J.,Park, E.,Kwon, S. J.(2020).Who will be your next customer: a machine learning approach to customer return visits in airline services.Journal of Business Research,121,121-126.
  13. Khormali, A.,Addeh, J.(2016).A novel approach for recognition of control chart patterns: type 2 fuzzy clustering optimized support vector machine.ISA Transactions,63,256-264.
  14. Kwon, W.,Lee, M.,Back, K.-J.(2020).Exploring the underlying factors of customer value in restaurants: a machine learning approach.International Journal of Hospitality Management,91,102643.
  15. Martínez, A.,Schmuck, C.,Pereverzyev, S., Jr.,Pirker, C.,Haltmeier, M.(2020).A machine learning framework for customer purchase prediction in the non-contractual setting.European Journal of Operational Research,281(3),588-596.
  16. Ranaee, V.,Ebrahimzadeh, A.(2011).Control chart pattern recognition using a novel hybrid intelligent method.Applied Soft Computing,11(2),2676-2686.
  17. Rumelhart, D. E.,Hinton, G. E.,Williams, R. J.(1986).Learning representations by back-propagating errors.Nature,323(6088),533-536.
  18. Schmidhuber, J.(2015).Deep learning in neural networks: an overview.Neural Networks,61,85-117.
  19. Vapnik, V. N.(2000).The Nature of Statistical Learning Theory.New York, NY:Springer.
  20. Williams, C. K. I.(2021).The effect of class imbalance on precision-recall curves.Neural Computation,33(4),853-857.
  21. Wu, C.,Liu, F.,Zhu, B.(2015).Control chart pattern recognition using an integrated model based on binary-tree support vector machine.International Journal of Production Research,53(7),2026-2040.
  22. Yang, Z.-C.,Kuang, H.,Xu, J.-s.,Sun, H.(2015).Artificial immune algorithm-based credit evaluation for mobile telephone customers.Journal of the Operational Research Society,66(9),1533-1541.
  23. Zhou, X.,Jiang, P.,Wang, X.(2018).Recognition of control chart patterns using fuzzy SVM with a hybrid kernel function.Journal of Intelligent Manufacturing,29(1),51-67.
  24. Zonnenshain, A.,Kenett, R. S.(2020).Quality 4.0—the challenging future of quality engineering.Quality Engineering,32(4),614-626.