题名

Closed-Form Formulae of Wordlength Pattern for Saturated Resolution IV and III Designs and Their Relationships

并列篇名

解析度IV和III飽和設計的字長樣式之封閉公式及其關係

DOI

10.6220/joq.202302_30(1).0002

作者

Jen-der Day(戴貞德);Hsin-Lu Liu(劉信陸);Yu-Lin Han(韓育霖);Tsai-Hsin Cheng(鄭再興);Hsien-Tang Tsai(蔡憲唐)

关键词

complementary theory ; geometrical design ; minimum aberration ; resolution ; two-level fractional factorial design ; 互補理論 ; 幾何設計 ; 最小像差 ; 解析度 ; 兩水準部分實驗設計

期刊名称

品質學報

卷期/出版年月

30卷1期(2023 / 02 / 28)

页次

13 - 25

内容语文

英文;繁體中文

中文摘要

Based on the wordlength pattern (WLP), resolution and minimum aberration are the two most useful criteria for choosing a good two-level fractional factorial experiment. Using geometrical designs and complementary theory, this paper develops the closed-form formulae of WLP for saturated resolution IV (R-IV) and R-III designs with any run size to overcome the tedious calculation of large-scale design and provide some theoretical background. We also use inductive proof to explore the relationships between and within two saturated designs. These results can be used to develop closed-form formulae of WLP for other special designs.

英文摘要

基於字長樣式,解析度和最小像差是兩個最有用的標準,用以選擇良好的兩水準部分實驗設計。本文利用幾何設計和互補理論,為任意大小規模解析度IV和III飽和設計開發了字長樣式的封閉公式,從而克服了大規模設計的繁瑣計算,並提供了一些理論背景;另外我們還使用歸納證明來探索兩個飽和設計之間的關係。這些結果可用於為其他特殊設計開發字長樣式的封閉公式。

主题分类 社會科學 > 管理學
参考文献
  1. Day, J.-D.(2017).A heuristic method for planning two-level fractional factorial experiments using basic quaternary design table.Journal of Quality,24(4),300-310.
    連結:
  2. Block, R. M.,Mee, R. W.(2005).Resolution IV designs with 128 runs.Journal of Quality Technology,37(4),282-293.
  3. Box, G. E. P.,Hunter, J. S.(1961).The 2k – p fractional factorial designs: part I.Technometrics,3(3),311-351.
  4. Butler, N. A.(2003).Some theory for constructing minimum aberration fractional factorial designs.Biometrika,90(1),233-238.
  5. Chen, H.,Hedayat, A. S.(1996).l designs with weak minimum aberration.The Annals of Statistics,24(6),2536-2548.
  6. Chen, J.,Sun, D. X.,Wu, C. F. J.(1993).A catalogue of two-level and three-level fractional factorial designs with small runs.International Statistical Review,61(1),131-145.
  7. Fries, A.,Hunter, W. G.(1980).Minimum aberration 2k – p designs.Technometrics,22(4),601-608.
  8. Mee, R. W.,Xiao, J. R.(2008).Optimal foldovers and semifolding for minimum aberration even fractional factorial designs.Journal of Quality Technology,40(4),448-460.
  9. Plackett, R. L. and Burman, J. P., 1946, The design of optimum multifactorial experiments, Biometrika, 33(4), 305-325. doi:10.2307/2332195
  10. Tang, B.,Wu, C. F. J.(1996).Characterization of minimum aberration 2n – k designs in terms of their complementary designs.The Annals of Statistics,24(6),2549-2559.
  11. Tsai, H.-T.(1999).Number representation method for obtaining two-factor interaction columns in two level orthogonal arrays.International Journal of Quality & Reliability Management,16(6),552-561.
  12. Tsai, H.-T.,Day, J.-D.(2011).Recursive equations of word-length patterns for special geometrical designs.9th Asian Network for Quality (ANQ) Congress,Ho Chi Minh City, Vietnam:
被引用次数
  1. Yu-Lin Han,Tsai-Hsin Cheng,Jen-der Day,Hsin-Lu Liu,Hsien-Tang Tsai(2023)。Binary Column Assignment Method for Two-Level Minimum Aberration Fractional Factorial Designs。品質學報,30(2),67-88。