题名

Binary Column Assignment Method for Two-Level Minimum Aberration Fractional Factorial Designs

并列篇名

兩水準最小像差部分設計的二進制行配置法

DOI

10.6220/joq.202304_30(2).0001

作者

Jen-der Day(戴貞德);Hsin-Lu Liu(劉信陸);Tsai-Hsin Cheng(鄭再興);Yu-Lin Han(韓育霖);Hsien-Tang Tsai(蔡憲唐)

关键词

geometrical design ; minimum aberration ; resolution ; right-half R-III design ; wordlength pattern ; 幾何設計 ; 最小像差 ; 解析度 ; 右半解析度III設計 ; 字長樣式

期刊名称

品質學報

卷期/出版年月

30卷2期(2023 / 04 / 30)

页次

67 - 88

内容语文

英文;繁體中文

中文摘要

Weighing the pros and cons between the resolution and experimental runs, we believe that resolution III designs still have practical value and are worthy of attention. This paper uses the binary representation of the number of factors and proposes a binary column assignment method for constructing minimum aberration (MA) geometrical designs. Then we develop a combinatorial algorithm and the closed-form formulae for the wordlength pattern (WLP) of a right-half resolution III (R-III) design, which can be used to calculate the WLPs for (1) all R-III MA designs from 8 to 256 runs; (2) a family of R-III MA designs constructed by using MA 128-run designs; and (3) the large R-III weak MA designs.

英文摘要

權衡解析度和實驗次數之間的利弊,可以得知解析度III的設計仍然有其實用價值且值得關注。本文運用因子數的二進制表示法,提出了二進制行配置法來建構具有最小像差的兩水準部分幾何設計。之後,我們為右半解析度III部分設計的字長樣式開發了組合演算法和封閉公式,其可用於計算下列三種特殊設計的字長樣式:(1)具有8到256實驗次數的所有解析度III且最小像差的部分設計;(2)運用128實驗次數最小像差設計所建構的解析度III且最小像差的部分設計之系列;(3)大型解析度III且弱最小像差的部分設計。

主题分类 社會科學 > 管理學
参考文献
  1. Day, J.-d.(2017).A heuristic method for planning two-level fractional factorial experiments using basic quaternary design table.Journal of Quality,24(4),300-310.
    連結:
  2. Day, J.-d.,Liu, H.-L.,Han, Y.-L.,Cheng, T.-H.,Tsai, H.-T.(2023).Closed-form formulae of wordlength pattern for saturated resolution IV and III designs and their relationships.Journal of Quality,30(1),13-25.
    連結:
  3. Block, R. M.,Mee, R. W.(2005).Resolution IV designs with 128 runs.Journal of Quality Technology,37(4),282-293.
  4. Box, G. E. P.,Hunter, J. S.(1961).The 2k − p fractional factorial designs: part I.Technometrics,3(3),311-351.
  5. Butler, N. A.(2003).Some theory for constructing minimum aberration fractional factorial designs.Biometrika,90(1),233-238.
  6. Chen, H.,Hedayat, A. S.(1996).2n − l designs with weak minimum aberration.The Annals of Statistics,24(6),2536-2548.
  7. Chen, J.(1992).Some results on 2n − k fractional factorial designs and search for minimum aberration designs.The Annals of Statistics,20(4),2124-2141.
  8. Chen, J.,Sun, D. X.,Wu, C. F. J.(1993).A catalogue of two-level and three-level fractional factorial designs with small runs.International Statistical Review,61(1),131-145.
  9. Chen, J.,Wu, C. F. J.(1991).Some results on sn − k fractional factorial designs with minimum aberration or optimal moments.The Annals of Statistics,19(2),1028-1041.
  10. Day, J.-d.(2015).Combinatorial algorithm of wordlength pattern for two-level fractional factorial designs.21st ISSAT International Conference on Reliability and Quality in Design,Philadelphia, PA:
  11. Fries, A.,Hunter, W. G.(1980).Minimum aberration 2k − p designs.Technometrics,22(4),601-608.
  12. Mee, R. W.,Xiao, J.(2008).Optimal foldovers and semifolding for minimum aberration even fractional factorial designs.Journal of Quality Technology,40(4),448-460.
  13. Plackett, R. L. and Burman, J. P., 1946, The design of optimum multifactorial experiments, Biometrika, 33(4), 305-325. doi:10.2307/2332195
  14. Ryan, K. J.,Bulutoglu, D. A.(2010).Minimum aberration fractional factorial designs with large N.Technometrics,52(2),250-255.
  15. Sullivan, J. H.(Ed.)(2006).Corrigenda.Journal of Quality Technology,38(2),196.
  16. Tang, B.,Wu, C. F. J.(1996).Characterization of minimum aberration 2n − k designs in terms of their complementary designs.The Annals of Statistics,24(6),2549-2559.
  17. Tsai, H.-T.(1999).Number representation method for obtaining two-factor interaction columns in two-level orthogonal arrays.International Journal of Quality & Reliability Management,16(6),552-561.
  18. Xu, H.(2009).Algorithmic construction of efficient fractional factorial designs with large run sizes.Technometrics,51(3),262-277.
  19. Yates, F., 1935, Complex experiments, Supplement to the Journal of the Royal Statistical Society, 2(2), 181-247. doi:10.2307/2983638