题名

Recoverable Remanufacturing Programming for a Sustainable Supply Chain Decision Model

并列篇名

可回收再製造規劃之永續供應鏈決策模式

DOI

10.6220/joq.202304_30(2).0003

作者

Tai-Sheng Su(蘇泰盛);Chin-Chun Wu(吳靖純);Mei-Chun Kuo(郭玫均)

关键词

sustainable supply chain ; fuzzy multi-objective linear programming ; interactive two-phase possibilistic linear programming ; decision quality ; 永續供應鏈 ; 模糊多目標線性規劃 ; 互動式二階段可能性線性規劃 ; 決策品質

期刊名称

品質學報

卷期/出版年月

30卷2期(2023 / 04 / 30)

页次

112 - 146

内容语文

英文;繁體中文

中文摘要

This work discusses a model for sustainable logistics decision-making. A sustainable supply chain system consists of a procurement stage, a remanufacturing stage, an assembly stage, and a distribution stage. The proposed procedure considers multiple components, sources, suppliers, machines, and logistics centers (LCs) in a sustainable logistics system. Sustainable logistics is used to integrate new and recoverable materials into a remanufacturing system. Because the LCs' demand and related parameters are imprecise/fuzzy in nature, a triangular possibility distribution can be used. The proposed fuzzy multi-objective linear programming model aims to simultaneously minimize total cost and total lead time by considering the uncertainty associated with the quantity of demand, the procurement, remanufacturing, and distribution stages restrictions. This work proposes a problem-solving procedure with an interactive two-phase possibilistic linear programming approach for solving fuzzy multi-objective recoverable remanufacturing programming problems. Halogen lamp heater case was used to test the proposed models. The complete results presented in this work will allow decision-making managers to better understand systematic analysis and decision quality for the cost-effectiveness and lead time of recoverable remanufacturing planning in a sustainable supply chain.

英文摘要

本研究針對永續供應鏈決策模式進行探討,永續供應鏈體系中包括採購、製造及配送階段,且考量多料源、多供應商、多零組件、多機臺及多個物流中心,模式中納入新零組件與回收零組件可混合投入再製造,各物流中心之需求量具不確定性,是以三角可能性分配的型態來表示。本研究應用模糊多目標線性規劃法與可能性規劃法,建構可回收再製造規劃之永續供應鏈決策模式,模式中同時考量總成本與前置時間最小化為目標,且需求量具不確定性,並考慮採購、再製造及配送階段之限制。本研究利用互動式二階段可能性線性規劃法針對該模式提出求解程序,以提高決策品質。再以一個加熱燈的數值範例進行模擬測試,以驗證模式之正確性,可有效率地進行永續供應鏈決策模式之再製造規劃,作為採購、投料及配送決策時之參考。

主题分类 社會科學 > 管理學
参考文献
  1. Alfonso-Lizarazo, E. H.,Montoya-Torres, J. R.,Gutiérrez-Franco, E.(2013).Modeling reverse logistics process in the agro-industrial sector: the case of the palm oil supply chain.Applied Mathematical Modelling,37(23),9652-9664.
  2. Alimoradi, A.,Yussuf, R. M.,Zulkifli, N.(2011).A hybrid model for remanufacturing facility location problem in a closed-loop supply chain.International Journal of Sustainable Engineering,4(1),16-23.
  3. Assid, M.,Gharbi, A.,Hajji, A.(2019).Production planning of an unreliable hybrid manufacturing–remanufacturing system under uncertainties and supply constraints.Computers & Industrial Engineering,136,31-45.
  4. Ayvaz, B.,Bolat, B.,Aydın, N.(2015).Stochastic reverse logistics network design for waste of electrical and electronic equipment.Resources, Conservation & Recycling,104(Pt. B),391-404.
  5. Bazan, E.,Jaber, M. Y.,El Saadany, A. M. A.(2015).Carbon emissions and energy effects on manufacturing–remanufacturing inventory models.Computers & Industrial Engineering,88,307-316.
  6. Behfard, S.,van der Heijden, M. C.,Al Hanbali, A.,Zijm, W. H. M.(2015).Last time buy and repair decisions for spare parts.European Journal of Operational Research,244(2),498-510.
  7. Bellman, R. E.,Zadeh, L. A.(1970).Decision-making in a fuzzy environment.Management Science,17(4),B141-B164.
  8. Cohen, M.(1988).Replace, rebuild or remanufacture.Equipment Management,16(1),22-26.
  9. Cunha, J. O.,Melo, R. A.(2016).A computational comparison of formulations for the economic lot-sizing with remanufacturing.Computers & Industrial Engineering,92,72-81.
  10. Dircksen, M.,Feldmann, C.(2020).Holistic evaluation of the impacts of additive manufacturing on sustainability, distribution costs, and time in global supply chains.Transportation Research Procedia,48,2140-2165.
  11. Dubois, D.,Foulloy, L.,Mauris, G.,Prade, H.(2004).Probability-possibility transformations, triangular fuzzy sets, and probabilistic inequalities.Reliable Computing,10,273-297.
  12. Fang, C.-C.,Lai, M.-H.,Huang, Y.-S.(2017).Production planning of new and remanufacturing products in hybrid production systems.Computers & Industrial Engineering,108,88-99.
  13. Hannan, E. L.(1981).Linear programming with multiple fuzzy goals.Fuzzy Sets and Systems,6(3),235-248.
  14. Kannan, G.,Sasikumar, P.,Devika, K.(2010).A genetic algorithm approach for solving a closed loop supply chain model: a case of battery recycling.Applied Mathematical Modelling,34(3),655-670.
  15. Konstantaras, I.,Skouri, K.(2010).Lot sizing for a single product recovery system with variable setup numbers.European Journal of Operational Research,203(2),326-335.
  16. Lai, Y.-J.,Hwang, C.-L.(1992).A new approach to some possibilistic linear programming problems.Fuzzy Sets and Systems,49(2),121-133.
  17. Li, X.,Baki, F.,Tian, P.,Chaouch, B. A.(2014).A robust block-chain based tabu search algorithm for the dynamic lot sizing problem with product returns and remanufacturing.Omega,42(1),75-87.
  18. Li, Y.,Chen, J.,Cai, X.(2007).Heuristic genetic algorithm for capacitated production planning problems with batch processing and remanufacturing.International Journal of Production Economics,105(2),301-317.
  19. Liang, T.-F.(2011).Application of fuzzy sets to manufacturing/distribution planning decisions in supply chains.Information Sciences,181(4),842-854.
  20. Liao, T.-Y.(2018).Reverse logistics network design for product recovery and remanufacturing.Applied Mathematical Modelling,60,145-163.
  21. Lu, S.,Zhu, L.,Wang, Y.,Xie, L.,Su, H.(2020).Integrated forward and reverse logistics network design for a hybrid assembly-recycling system under uncertain return and waste flows: a fuzzy multi-objective programming.Journal of Cleaner Production,243,118591.
  22. Luttwak, E.(1971).A Dictionary of Modern War.New York, NY:Harper & Row.
  23. Nenes, G.,Panagiotidou, S.,Dekker, R.(2010).Inventory control policies for inspection and remanufacturing of returns: a case study.International Journal of Production Economics,125(2),300-312.
  24. Ouaret, S.,Kenné, J.-P.,Gharbi, A.(2019).Production and replacement planning of a deteriorating remanufacturing system in a closed-loop configuration.Journal of Manufacturing Systems,53,234-248.
  25. Ozgen, D.,Gulsun, B.(2014).Combining possibilistic linear programming and fuzzy AHP for solving the multi-objective capacitated multi-facility location problem.Information Sciences,268,185-201.
  26. Paksoy, T.,Pehlivan, N. Y.(2012).A fuzzy linear programming model for the optimization of multi-stage supply chain networks with triangular and trapezoidal membership functions.Journal of the Franklin Institute,349,93-109.
  27. Panagiotidou, S.,Nenes, G.,Zikopoulos, C.,Tagaras, G.(2017).Joint optimization of manufacturing/remanufacturing lot sizes under imperfect information on returns quality.European Journal of Operational Research,258(2),537-551.
  28. Pedram, A.,Yusoff, N. B.,Udoncy, O. E.,Mahat, A. B.,Pedram, P.,Babalola, A.(2017).Integrated forward and reverse supply chain: a tire case study.Waste Management,60,460-470.
  29. Roghanian, E.,Pazhoheshfar, P.(2014).An optimization model for reverse logistics network under stochastic environment by using genetic algorithm.Journal of Manufacturing Systems,33(3),348-356.
  30. Saxena, L. K.,Jain, P. K.,Sharma, A. K.(2018).A fuzzy goal programme with carbon tax policy for Brownfield Tyre remanufacturing strategic supply chain planning.Journal of Cleaner Production,198,737-753.
  31. Schweiger, K.,Sahamie, R.(2013).A hybrid tabu search approach for the design of a paper recycling network.Transportation Research Part E: Logistics and Transportation Review,50,98-119.
  32. Shi, W.,Feng, T.,Min, K. J.(2016).Remanufacturing decision and sustainability under product life cycle uncertainty.The Engineering Economist,61(3),223-243.
  33. Soleimani, H.,Chaharlang, Y.,Ghaderi, H.(2018).Collection and distribution of returned-remanufactured products in a vehicle routing problem with pickup and delivery considering sustainable and green criteria.Journal of Cleaner Production,172,960-970.
  34. Stock, J. R.(1992).Reverse Logistics: White Paper.Lombard, IL:Council of Logistics Management.
  35. Su, T.-S.,Ciou, S.-R.(2019).A fuzzy multi-objective optimization model for recoverable manufacturing systems in uncertain environments.Journal of Industrial and Production Engineering,36(1),32-48.
  36. Su, T.-S.,Wu, C.-C.,Lin, L.-T.(2019).Optimization of remanufacturing systems by using a fuzzy multi-objective model to solve the planning problem.Journal of Information & Optimization Sciences,40(4),853-881.
  37. Su, T.-S.,Wu, C.-C.,Yang, H.-R.(2018).An analysis of energy consumption and cost-effectiveness for overhead crane drive systems by using fuzzy multi-objective linear programming.Journal of Intelligent & Fuzzy Systems,35(6),6241-6253.
  38. Torabi, S. A.,Hassini, E.(2008).An interactive possibilistic programming approach for multiple objective supply chain master planning.Fuzzy Sets and Systems,159(2),193-214.
  39. Tosarkani, B. M.,Amin, S. H.,Zolfagharinia, H.(2020).A scenario-based robust possibilistic model for a multi-objective electronic reverse logistics network.International Journal of Production Economics,224,107557.
  40. Zahiri, B.,Tavakkoli-Moghaddam, R.,Pishvaee, M. S.(2014).A robust possibilistic programming approach to multi-period location—allocation of organ transplant centers under uncertainty.Computers & Industrial Engineering,74,139-148.
  41. Zhalechian, M.,Tavakkoli-Moghaddam, R.,Zahiri, B.,Mohammadi, M.(2016).Sustainable design of a closed-loop location-routing-inventory supply chain network under mixed uncertainty.Transportation Research Part E: Logistics and Transportation Review,89,182-214.
  42. Zhang, Q.,Shah, N.,Wassick, J.,Helling, R.,van Egerschot, P.(2014).Sustainable supply chain optimisation: an industrial case study.Computers & Industrial Engineering,74,68-83.