题名

歐式保本型選擇權之設計與定價

并列篇名

The Design and Pricing of European Rebate Option

DOI

10.6545/JFS.2002.10(2).4

作者

潘璟靜(Ging-Ging Pan);李賢源(Shyan-Yuan Lee);吳土城(Tu-Cheng Wu)

关键词

保本型選擇權 ; 界限價格 ; 觀察期限 ; rebate option ; the barrier price ; the monitoring period

期刊名称

財務金融學刊

卷期/出版年月

10卷2期(2002 / 08 / 31)

页次

79 - 124

内容语文

繁體中文

中文摘要

本文針對投資人的保本心態,設計新奇選擇權,定名為保本型選擇權,將保本型選擇權定義如下:若買權(賣權)於觀察期限截止日,標的資產價格小於等於(大於等於)界限價格,則賣方退還買方原權利金並回收其流通在外的選擇權;若標的資涼價格大於於(小於)界限價格,則保本型選擇權等於一般型選擇權。應用平賭測度轉換,在利率隨機假設下,推導出股票、債券及股票交選擇權價格封閉式解。假設遠期利率波動度為債券到期期間之駝峰型函數,分別探討駝峰益、直線型與微笑型利率期間結構下整選擇權價格行為與避險比例變化。

英文摘要

This study designs an exotic option called rebate option, which aims at the conservativeness of investors. The definition of rebate option is: if the price of underlying asset is smaller (larger) than the barrier price at the end of the monitoring period, then the writer will pay back the initial price of the rebate option to call the outstanding options; and if the price of underlying asset is strictly larger (smaller) than the barrier price at the end of the monitoring period, then rebate options will be equal to traditional options. By martingale methods, this study derives a set of closed-form pricing formulas including stock rebate option, bond rebate option, and stock exchange rebate option. Assuming that the evolution of the forward rates is based upon a deterministic and humped volatility function, this study discusses how the option price and the hedge ratio react when the pricing parameter changes, given different initial term structures of the interest rate.

主题分类 社會科學 > 經濟學
社會科學 > 財金及會計學
参考文献
  1. Amin, K. I.,Morton, A. J.(1994).Implied Volatility Functions in Arbitrage-Free Term Structure Models.Journal of Financial Economics,35
  2. Black, F.,Scholes, M. S.(1973).The Pricing of Options and Corporate Liabilities.Journal of Political Economy,81(3)
  3. Carr, P. P.,Ellis, K.,Gupta, V.(1998).Static Hedging of Exotic Options.Journal of Finance,53
  4. Derman, E.,Ergener, D.,Kani, I.(1994).Forever Hedged.Risk Magazine,7
  5. Geman, H.,El Karoui, N.,Rochet, J. C.(1995).Changes of Numeraire, Changes of Probability Measures and Pricing of Options.Journal of Apply Probability,32
  6. Geske, R.(1979).The Valuation of Compound Options.Journal of Financial Economics,7
  7. Geske, R.,Johnson, H. E.(1984).The American Put Option Valued Analytically.The Journal of Finance,39(5)
  8. Heath, D. C.,Jarrow, R. A.,Morton, A. J.(1992).Bond Pricing and the Term Structure of Interest Rates: A New Methodology for Contingent Claims Valuation.Econometrica,60(1)
  9. Heath, D.,Jarrow, R.,Morton, A. J.,Spindel, M.(1992).Easier Done Than Said.Risk,5
  10. Heston, S. L.,Nandi, S.(2000).A Closed-from GARCH Option Valuation Model.The Review of Financial Studies,13(3)
  11. Heynen, R. C.,Kat, H. M.(1996).Discrete Partial Barrier Options with a Moving Barrier.The Journal of Financial Engineering,5(3)
  12. Ho, T. S. Y.,Lee, Sang Bin(1986).Term Structure Movements and Pricing Interest Rate Contingent Claims.The Journal of Finance,41(5)
  13. Hull, J.,White, A.(1990).Pricing Interest Rate Derivative Securities.The Review of Financial Studies,3(4)
  14. Jamshidian, F.(1989).An Exact Bond Option Pricing Formula.Journal of Finance,44
  15. Jarrow, R.,Turnbull, S.(1996).Derivative Securities.Cincinnati, Ohio:South-Western College Publishing.
  16. Kahn, R.(1991).The Handbook of Fixed Income Securities.
  17. Margrabe, W.(1978).The Value of an Option to Exchange One Asset for Another.Journal of Finance,33
  18. Mercurio, F.,Moraleda, J. M.(1996).An Analytically Tractable Interest Rate Model with Humped Volatility.Netherlands:Tinbergen Institute, Erasmus University Rotterdam.
  19. Merton, R. C.(1973).Theory of Rational Option Pricing.Bell Journal of Economics and Management Science,4(1)
  20. Moraleda, J. M.,Vorst, T. C. F.(1997).Pricing American Interest Rate Claims with Humped Volatility Models.Journal of Banking and Finance,21
  21. Rabinovitch, R.(1989).Pricing Stock and Bond Options when the Default-Free Rate is Stochastic.Journal of Financial and Quantitative Analysis,24(4)
  22. Ritchken, P.,Chuang, I.(1996).Option Pricing and Volatility Humps.Case Western Reserve University.
  23. Vasicek, O. A.(1977).An Equilibrium Characterization of the Term Structure.The Journal of Financial Economics,5
  24. 蔡明憲 Tsai, Min-Shann(2000)。有試用期選擇權及美式選擇權的定價。國立中山大學財務管理研究所。
被引用次数
  1. 葉仕國、張森林、林丙輝(2016)。台灣衍生性金融商品定價、避險與套利文獻回顧與展望。臺大管理論叢,27(1),255-304。