题名

動態波動模型預測能力之比較與實證

并列篇名

A Comparison and Empirical Study in Forecasting Abilities of Dynamic Volatility Models

DOI

10.6545/JFS.2004.12(1).1

作者

周雨田(Ray Y. Chou);巫春洲(Chun-Chou Wu);劉炳麟(Nathan Liu)

关键词

CARR ; GARCH ; 變幅 ; 波動性和槓桿效果 ; CARR model ; GARCH model ; Range ; Volatility and Leverage effect

期刊名称

財務金融學刊

卷期/出版年月

12卷1期(2004 / 04 / 30)

页次

1 - 25

内容语文

繁體中文

中文摘要

本研究討論CARR(Conditional Auto-Regressive Range)模型的經濟涵義及其性質,並以台灣發行量加權股價指數做為主要的研究對象,在週資料與日資料的基礎上,分別進行CARR模型及GARCH模型在波動性預測能力之比較。實證結果顯示,不管是樣本內及樣本外,在週資料的預測評比上皆得到CARR模型優於GARCH模型的結果,此與Chou(2003)利用S&P500指數所進行的研究結論具有一致性,而為了強化CARR模型的一致性,本文亦針對台灣店頭市場交易指數資料,進行頑強性驗證,二者皆支持CARR模型的可適用性。同時,股票市場中常見的槓桿效果也在本文的實證研究下獲得證實。

英文摘要

ARCH/GARCH family models have become popular in forecasting volatilities since the 1980's. In this paper we compare the empirical performance of the CARR model by Chou (2003) with the GARCH model. The CARR model effectively provides a dynamic structure for the range data which is more informative than conventional standpoint. Using the Taiwan Stock Exchange Capitalization Weighted Stock Index, the CARR model outperforms than GARCH model both in in-sample and out-of-sample forecasts of weekly stock market volatilities. Our results are consistent with that of Chou (2003) where the CARR model has better forecast abilities than the GARCH model based on S&P500 Index data. We also find significant evidence of the existence of a leverage effect in the Taiwan stock market.

主题分类 社會科學 > 經濟學
社會科學 > 財金及會計學
参考文献
  1. Alizadeh, S.,M. Brandt,F. Diebold(2002).Range-based estimation of stochastic volatility models.Journal of Finance,57,1047-1091.
  2. Andersen, T.,T. Bollerslev(1997).Heterogeneous information arrivals and return volatility dynamics: Uncovering the long run in high frequency returns.Journal of Finance,52,975-1005.
  3. Ballie, R. T.,R.P. DeGennaro(1990).Stock Returns and Volatility.Journal of Finance and Quantitative analysis,25,203-214.
  4. Black, F.(1976).Studies of Stock Price Volatility Changes.177-181.
  5. Bollerslev, T.(1986).Generalized Autoregressive Conditional Heteroskedasticity.Journal of Econometrics,31,307-327.
  6. Bollerslev, T.,J. Wooldridge(1992).Quasi maximum likelihood estimation and inference in dynamic models with time varying covariances.Econometric Reviews,11,143-172.
  7. Bollerslev, T.,R. Chou,K. Kroner(1992).ARCH modeling in finance: a review of the theory and empirical evidence.Journal of Econometrics,52,5-59.
  8. Bollerslev, T.,R. Engle,D. Nelson(1994).ARCH models.Handbook of Econometrics,2959-3038.
  9. Brandt, M. W.,F. Diebold(2004).A No-Arbitrage Approach to Range-Based Estimation of Return Coveriance and Correlations.Journal of Business
  10. Brandt, M.W.,C.S. Jones(2002).Volatility Forecasting with Ranged-Based EGARCH Models.working paper, University of Pennsylvania, USA
  11. Brooks, C.(2002).Introductory Econometrics for Finance.Cambridge,444-445.
  12. Cassuto, A.E.(1995).Non-Normal Error Patterns: How to Handle Them.The Journal of Business Forecasting: Methods and Systems,14,15-16.
  13. Chou, R.(2003).Working paper, The Institute of Economics Academia Sinica.Taiwan:
  14. Christie, A.A.(1982).The Stochastic Behavior of Common Stock Variances: Value, Leverage, and Interest Rate Effects.Journal of Financial Economics,10,407-432.
  15. Christoffersen, P.,F.X. Diebold(2000).How relevant is volatility forcasting for financial risk management?.Review of Economics and Statistics,82,1-11.
  16. Engle, R.(1982).Autoregressive conditional heteroscedasticity with estimates of the variance of U.K. inflation.Econometrica,50,987-1008.
  17. Engle, R.,J. Russell(1998).Autoregressive conditional duration: a new model for irregular spaced transaction data.Econometrica,66,1127-1162.
  18. Fama, E. F.(1965).The Behavior of Stock Market Prices.Journal of Business,38,34-105.
  19. French, K.,W. Schwert,R. Stambaugh(1987).Expected stock returns and volatility.Journal of Financial Economics,19,3-29.
  20. Galant, A.,C. Hsu,G. Tauchen(1999).Calculating volatility diffusions and extracting integrated volatility.Review of Economics and Statistics,81,617-631.
  21. Hull, J.,A. White(1987).The Pricing of Options on Assets with Stochastic Volatilities.Journal of Finance,42,281-300.
  22. Karpoff, Jonathan(1987).The Relation between Price Changes and Trading Volume: A Survey.Journal of Financial and Quantitative Analysis,22(1),109-126.
  23. Mandelbrot, B.(1963).The Variation of Certain Speculative Prices.Journal of Business,36,294-419.
  24. Morgan, I.G.(1976).Stock Price and Heteroskedasticity.Journal of Business,49,496-508.
  25. O`Hara Maureen(1995).Market Microstructure Theory.
  26. Odean Terrance(1998).Volume, Volatility, Price and Profit when All Traders are Above Average.Journal of Finance,LIII(6),1887-1937.
  27. Parkinson, M.(1980).The extreme value method for estimating the variance of the rate of return.Journal of Business,53,61-65.
  28. Poterba, J.,L. Summers(1986).The persistence of volatility and stock market fluctuations.American Economic Review,76,1142-1151.
  29. West, K.D.,D. Cho(1995).The predictive ability of several models of exchange rate volatility.Journal of Econometrics,69,367-391.
  30. Zakoian, J.M.(1994).Threshold Heteroskedastic Models.Journal of Economic Dynamics and Control,18,931-955.
被引用次数
  1. 陳達新、周恆志、巫春洲(2007)。Gram-Charlier GARCH選擇權演算法的評價與避險績效。管理與系統,14(1),95-119。
  2. 范家銘、周恆志、巫春洲、王錦瑩(2008)。變幅EGARCH模型預測能力之實證研究。財務金融學刊,16(3),173-207。
  3. 章育瑄、洪瑞成、邱建良(2011)。波動預測績效比較─變幅為基礎 vs. 報酬率為基礎。績效與策略研究,8(2),31-48。
  4. 張簡彰程,吳千慧(2023)。ETF之動態五線譜投資策略研究。管理資訊計算,12(1),301-310。
  5. 周恆志(2012)。條件變幅極端值法在期貨保證金估計之應用。管理與系統,19(1),1-27。
  6. (2006)。商品期貨波動性之預測~CARR模型之應用。朝陽商管評論,5(2),115-132。