题名

近月台股期貨在交易、非交易、以及跨越交易與非交易期間之訊息傳遞實證-價格發現與價格波動率內涵

并列篇名

An Investigate on Information Transmission of Nearby-Month Taiwan Stock Index Futures during Trading, Nontrading, and between Trading and Nontrading Period: Price Discovery and Content of Price Volatility

DOI

10.6545/JFS.2004.12(1).3

作者

蔡垂君(Chui-Chun Tsai);李存修(Tsun-Siou Lee)

关键词

價格發現 ; 價格波動率內涵 ; 交易期間 ; 非交易期間 ; Pricediscovery ; content of price volatility ; trading period ; nontrading period ; VECM-bi-EGARCH

期刊名称

財務金融學刊

卷期/出版年月

12卷1期(2004 / 04 / 30)

页次

53 - 80

内容语文

繁體中文

中文摘要

本文運用VECM-bi-EGARCH(1.1)模式的台股期貨訊息傳遞進行實證,以期貨與現貨報酬之領先/落後關係說明台股期貨價格發現功能;以報酬波動率之持續性、不對稱性及外溢性說明期貨價格波動率之內涵。然而,有鑑於台股期貨依交易期間、非交易期間,以及跨越交易與非交易期間所擷取之報酬波動司已具有不一致性,本文分別私交易時間內之每五分鐘及日內報酬、非交易期間之隔夜報酬,以及跨越交易與非交易期間之開盤與收盤報酬進行實證。實證結果可獲得以下二項結論:(1)台股期貨在各式報酬型態中,以非交易期間隔夜報酬之價格領先效果最具顯著性,具較強之價格發現功能。(2)台股期貨每五分鐘、日內及隔夜報酬波動率均有持續性影響力;台股期貨各式報酬均受到期貨市場上壞消息及非預期大幅度偏離消息之影響而具不對稱性波動;整體而言,台股期貨報酬波動率具稍強之外溢性,當期貨市場上具有壞消息時,期貨每五分鐘報酬波動率會對現貨每五分鐘報酬波動率產生外溢,但當台股期貨與現貨市場具有未預期大幅度偏離消息時,彼此波動率則為互溢。而各種不同型態報酬中,以交易期間每五分鐘報酬之波動率內涵最具顯著性,這顯示唯有透過更細微的時間切割,才能觀測到期貨報酬波動率所受之影響。

英文摘要

This paper applies VECM-bi-EGARCH (1,1) model to investigate the information transmission of nearby-month Taiwan Stock Index Futures. We use the return lead/lag relationship between futures and spots to explain price discovery of futures; and use the return persistent process dominate of volatility over horizon time. asymmetric volatility and volatility spillover to explain the content of futures price However, the volatility of return is heterogeneous when return is garthered by trading, nontrading, and between tradrng and nontrading period Thus we examine and garther the return data from three period These include 5 mintue and intraday data garthered during trading period; overnight data garthered b} nontradmg period. open-to-open and close-to-close data garthered between trading and nontrading period. Two major findings obtain regarding the price discovery and content of price volatility' (1) Taiwan stock index futures could creat more price discovery function versus spots on overnight data. The price lead effects would be statistic siganilieant. (2) Taiwan stock index futures presents more persistent volatility over horizon time when five minute data. intraday and overnight data arc tested. Negative and unexpected shocks make Taiwan stock index futures present asymmetric volatility when all patterns of return are tested. Compare with Taiwan stock index futures and spots, Taiwan stock index futures would be with more volatility spillover Negative shocks on futures markets result in higher volatility in pots market when 5 minute data IS tested; unexpected shocks on the futures market induce higher volatility in the spots market. and Vice versa when all patterns of return are tested. The content of futures price volatility would be statistic siganificant when 5 minutes data is test. Therefore, by delicacy observation. we cloud aware the price discovery and content of futures price volatility more clarly.

主题分类 社會科學 > 經濟學
社會科學 > 財金及會計學
参考文献
  1. 周雨田、李志宏、巫春洲(2002)。台灣期貨與現貨市場的訊息傳遞效果分析。財務金融學刊,10,1-22。
    連結:
  2. 謝文良(2002)。價格發現、資訊傳遞、與市場整合-台股期貨市場之研究。財務金融學刊,10,1-31。
    連結:
  3. Abhyankar, A. H.(1998).Linear and Nonlinear Granger Causality: Evidence from the U.S. Stock Index Futures Market.Journal of Futures Markets,18,519-540.
  4. Abhyankar, A. H.(1995).Return and Volatility Dynamics in the FT-SE l00 Stock Index and Stock Index Futures Markets.Journal of Futures Markets,15,457-486.
  5. Andersen, T. G.,Sorensen, B. E.(1997).GMM and QML Asymptotic Strandard Deviations in Stochastic Volatility Models: Comments on Ruiz(1994).Journal of Econometrics,76,397-403.
  6. Babsiri, M. E.,J. Zakoian(2001).Contemporaneous Asymmetry in GARCH Process.Journal of Econometrics,101,257-294.
  7. Berndt, E. K.,B. H. Hall,R. E. Hall,J. Hausman(1974).Estimation and Inference in Nonlinear Structural Models.Annals of Economic and Social Measurement,4,653-665.
  8. Bhar, R.(2001).Return and Volatility Dynamics in the Spot and Futures Markets in Australian: An Intervention Analysis in a Bivariate EGARCH-X Framework.Journal of Futures Markets,21,833-850.
  9. Black, F.(1976).Studies of Stock Markets Volatility Changes.Business and Economic Statistics Section,177-181.
  10. Black, F.(1986).The Pricing of Commodity Contracts.Journal of Financial Economics,3,167-179.
  11. Bollerslev, T.,J. M. Wooldridge(1992).Quasi-Maximum Likelihood Estimation and Inference in Dynamic Models with Time-Varying Covariances.Econometric Review,11,143-1172.
  12. Bollerslev, T.,R. Y. Chou, K. F. Kroner(1992).ARCH Modeling in Finance: A Review of the Theory and Empirical Evidence.Journal of Econometrics,52,5-59.
  13. Braun, P. A.,D. B. Nelson,A. M. Stillier(1995).Good News, Bad News, Volatility, and Betas.Journal of Finance,50,1575-1603.
  14. Butler, J. B.(2000).Efficiency Results of MLE and GMM Estimation with Sampling Weights.Journal of Econometrics,96,25-37.
  15. Chan, K.(1992).A Further Analysis of the Lead-lag Relationship between the Cash Market and Stock Index Futures Market.Review of Financial Studies,5,123-152.
  16. Chan, K.,K. C. Chan,G. A. Karolyi(1991).Intra-day Volatility in the Stock Index and Stock Index Futures Markets.Review of Financial Studies,4,657-684.
  17. Chu, Q. C.,W. G. Hsieh,Y. Tse(1999).Price Discovery on the S&P 500 Index Markets: An Analysis of Spot Index, Index Futures, and SPDRs.International Review of Financial Analysis,8,21-34.
  18. Daigler, R. T.(1997).Intra-day Futures Price volatility and the Volume of Market Behavior.Journal of Futures Markets,17,45-74.
  19. Daigler, R. T.,M. K. Wiley(1999).The Impact of Trader Type on the Futures Volatility-Volume Relation.Journal of Finance,54,2297-2315.
  20. Dickey, D. D.,W. A. Fuller(1979).Distribution of the Estimators for Autoregressive Time Series with a Unit Root.Journal of the American Statistical Association,74,427-431.
  21. Ekman, P. D.(1992).Intra-day Patterns in the S&P 500 Index Futures Market?.Journal of Futures Markets,12,365-381.
  22. Engle, R F.(1982).Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of Untied Kingdom Inflation.Econometrica,50,987-1007.
  23. Engle, R F.,C. W. J. Granger(1987).Co-integration and Error Correction: Representation, Estimation, and Testing.Econometrica,55,251-276.
  24. Engle, R F.,T. Ito,W. Lin(1990).Meteor Showers or Heat Waves? Heteroskedastic Intra-Daily Volatility in the Foreign Exchange Market.Econometrica,58,525-542.
  25. Engle, R F.,V. K. Ng(1993).Measuring and Testing the Impact of New on Volatility.Journal of Finance,48,1749-1778.
  26. Fama, E. F.(1965).The Behavior of Stock-Market Prices.Journal of Business,38,34-105.
  27. Fama, E. F.(1970).Efficient Capital Markets: A Review of Theory and Empirical Work.Journal of Finance,25,383-417.
  28. Gerety, M. S.,J. H. Mulherin(1994).Price Formation on Stock the Evolution of Trading within the Day.Review of Financial Studies,7,609-629.
  29. Granger, C. W. J.(1969).Investigating Causal Relations by Econometric Models and Cross-Spectral Models.Econometrica,37,424-438.
  30. Grossman, S. J.(1989).The Informational Role of Price.Cambridge:The MIT Press.
  31. Hamilton, J. D.(1994).Time Series Analysis.The Princeton University Press.
  32. Hansen, L. P.(1982).Large Sample Properties of Generalized Method of Moments Estimators.Econometrica,50,1029-1054.
  33. Harris, L.(1986).A Transaction Data Study of Weekly and Intra-daily Patterns in Stock Returns.Journal of Financial Economics,16,99-117.
  34. Jarque, C. M.,A. K. Bera(1987).Test for Normality of Observations and Regression Residuals.International Statistical Reviews,55,163-172.
  35. Jones, C. M.,G. Kaul,M. L. Lipson(1994).Transactions, Volume, and Volatility.Review of Financial Studies,9,631-651.
  36. Kurov, A. A.,D. J. Lasser(2002).The Effect of the Introduction of Cubes on the NASDAQ-100 Index Spot-futures Pricing Relationship.Journal of Futures Markets,22,197-218.
  37. Lee, S.,B. E. Hansen(1994).Asymptotic Theory for the GARCH(1,1) Quasi-maximum Likelihood Estimator.Econometric Theory,10,29-52.
  38. Lockwood, L. J.,S. C. Linn(1990).An Examination of Stock Market Return Volatility during Overnight and Intra-day Periods, 1964-1989.Journal of Finance,45,591-601.
  39. Maberly, E. D.(1986).The Informational Content of the Intra-day Price Change with Respect to Stock Index Futures.Journal of Futures Markets,6,385-395.
  40. Mandelbrot, B.(1963).The Variation of Certain Speculative Prices.Journal of Business,36,394-419.
  41. Nelson, D. B.(1991).Conditional Heteroskedasticity in Asset Returns: A New Approach.Econometrica,59,347-370.
  42. Nelson, D. B.(1990).ARCH Models as Diffusion Approximations.Journal of Econometrics,45,7-38.
  43. Nelson, D. B.,D. P. Foster(1994).Asyptotic Filtering Theory for Univariate ARCH Models.Econometrica,62,1-41.
  44. Newey, W. K.(1985).Generalized Method of Moments Specification Testing.Journal of Econometrics,29,229-256.
  45. Newey, W. K.,Steigerwald, D. G.(1997).Asymptotic Bias for Quasi-maximum-likelihood Estimators in Conditional Heteroskedasticity Models.Econometricsa,65,587-599.
  46. Oldfield, G. S.,R. J. Rogalski(1980).A Theory of Common Stock Returns over Trading and Non-Trading Periods.Journal of Finance,35,729-753.
  47. Ross, S. A.(1989).Information and Volatility: The no-arbitrage Martingale Approach to Timing and Resolution Irrelevancy.Journal of Finance,44,1-17.
  48. Ruiz, E.(1994).Quasi-maximum Likelihood Estimation of Stochastic Volatility Models.Journal of Econometrics,63,289-306.
  49. Sims, C. A.(1980).Marcoeconomics and Reality.Econometrica,48,1-48.
  50. Speight, A. E.,D. G. Mcmillam,O. A. Gwilym(2000).Intra-Day Volatility Components in FTSE-100 Stock Index Futures.Journal of Futures Markets,20,425-444.
  51. Stoll, H. R,R. E. Whaley(1990).The Dynamics of Stock Index and Stock Index Futures Returns.Journal of Financial Quantitative Analysis,25,441-468.
  52. Tse, Y.(1999).Price Discovery and Volatility Spillovers in the DJIA Index and Futures Markets.Journal of Futures Markets,19,911-930.
  53. Wahab, M.,M Lashgari(1993).Price Dynamics and Error Correction in Stock Index and Stock Index Futures Markets: A Co-integration Approach.Journal of Futures Markets,13,711-742.
  54. Weiss, A. A(1986).Asymptotic Theory for ARCH Models: Estimation and Testing.Econometric Theory,50,1-25.
  55. White, H.(1982).Maximum Likelihood Estimation of Misspecified Models.Econometrica,2,107-131.
  56. Wooldridge, J. M.(1991).Specification Testing and Quasi-maximum-likelihood Estimation.Journal of Econometrics,48,29-55.
  57. 徐守德、黃玉娟、余明芳(2001)。台股指數期貨日內交易型態之研究-摩根台股期貨與台灣指數期貨之比較。管理評論,20,31-54。
  58. 莊忠柱(2001)。現貨、近月期與近季期股價指數期貨市場間價格與價格波動的資訊傳遞:台灣早期的經驗。管理學報,18,311-332。
  59. 黃玉娟(1999)。報酬與波動性動態關聯之研究-摩根台股指數與指數期貨之探討。研究彙刊,9,153-162。
被引用次数
  1. 王健聰(2006)。台股指數期貨避險—存續期間效果、到期效果與穩定性之研究。經濟研究,42(2),209-244。
  2. 魏慧珊、歐仁和、黃志偉、張傳章(2016)。臺灣財務領域研究之回顧與展望。管理學報,33(1),105-137。
  3. 徐清俊、李柏勳(2007)。在不同時間趨勢下台股指數現貨與台股指數期貨領先落後關係之探討。興國學報,8,127-156。
  4. 葉仕國、張森林、林丙輝(2017)。台灣衍生性金融商品市場實證與運用研究文獻回顧與展望。臺大管理論叢,27(2),211-258。
  5. 張志向(2006)。台指選擇權推出對領先落後關系的影響:內含價值與權利類型。亞太經濟管理評論,10(1),1-25。