题名

由市場微觀結構論探討台灣10年期公債期貨日內不對稱的價量關係

并列篇名

An Investigation on Taiwan to-Year Government Bond Futures: Market Microstructure Theory and Asymmetrical Price-Volume Relationship

DOI

10.6545/JFS.2006.14(1).5

作者

蔡垂君(Chui-Chun Tsai);李存修(Tsun-Siou Lee)

关键词

10年期公債期貨 ; 市場微觀結構 ; 價量關係 ; 雙元邏輯式不對稱非線性平滑移轉自迴歸模式 ; GBF ; market microstructure ; price volume relationship ; bi- LANSTAR

期刊名称

財務金融學刊

卷期/出版年月

14卷1期(2006 / 04 / 30)

页次

125 - 152

内容语文

繁體中文

中文摘要

本文運用bi- LAN STAR模式以市場微觀結捨論探討台灣10年期公債期貨日內不對稱的價量關係,擷取資料資料包含日內每15分錯與30分鐘、以及每1小時分時交易量變動與報酬波動率,依據研究目的成立四個研究命題,針對開盤、收盤量與整體交易期間進行實證,包含:(1)繪製日內隨著開盤至收盤經過的價量變數是否呈現U型。(2)判斷價量之間存在的量先價行關條。(3)受到移轉函數為非線性且具有統計顯著性的影響,價量具有非對稱性與非線性關係。(4)當交易量變動越高、則報酬波動率變化也越大,價量呈現不對稱性關係。交易量變動與報酬波動率之間的關聯性實證結果如下:(1)日內隨著開盤至收盤經過的價量圖型不完全為U型而為U+W型。交易量變動與報酬波動率隨著日內時間經過呈現開盤與收盤階段較高而其它時段較低的現象,而開盤時段相較於整體市場表現更具統計上顯著的低交易量與報酬,因此,開盤分時發生逆選擇將比其它時段機會高,且因流動性偏低不利於機構法人進行操作。(2)由於公債期貨的交易不夠頻繁且過於集中,因此,在進行模式估計時,以每1小時擷取的開盤資料較具以上命題所述的特質,呈現量先價行,而受到轉換函數為非線性所影響,價量亦具有非線性關係,受非線性式影響的不對稱性轉換強度為0.6938。而在開盤交易量變動較大時,對報酬波動率的影響不僅具有顯著性且係數值也大於1為2.3781,也就是交易量變動對報酬波動率的影響力較大,價量具有不對稱且非性性關係。

英文摘要

This paper applies bi-ANSTAR model to investigate on Taiwan 10-year Government Bond Futures. With concept of market microstructure theory, we research asymmetrical price-volume relationship between volume change and return volatility. The study data are measured by intraday intervals of 15 minutes, 30 minutes and 1 hour. According research purposes, we establish four research propositions to study and compare the interval between first open, last close and total period. The propositions major on: (a) Draw volume change and return volatility from open to close and adjudge the grape is U sharp or not. (b) Adjudge the lead relationship between price and volume. (c) Study nonlinear transition function effect on nonlinear. price-volume relationship. (d) Compare the effect between volume change and return volatility. It seems exist large change in volume usually make magnitude effect on return volatility. Price-volume relationship is asymmetrical. Two major findings obtain regarding the price-volume relationship : (a) The exchange time intervals from open to close, the graphs of volume change and return volatility is not U sharp, but they're U+W sharp . In open and close period, volume change and return volatility is higher than other intraday periods. Especially compare with total exchange period, exchange volume and return are significant lower in open interval. It means open period has higher opportunity occur adverse selection and lower market liquidity. That makes institution investors reduce ask or bid in open interval. (b) Becausc exchanges aren't frequently and concentrate on any exchange period, only I hour intervals data present significant price-volume relationship. Volume change leads return volatility one interval, that's 1hour. Because nonlinear transition function effect, price-volume relationship is nonlinear The nonlinear and asymmetrical effect on transition strength is 0.6938. Compare with higher volume change in open period, the effect coefficient of volume change on return volatility is more than I, that's 2.3781. Volume change would effect return volatility more magnitude. Price-volume relationship is asymmetrical and nonlinear.

主题分类 社會科學 > 經濟學
社會科學 > 財金及會計學
参考文献
  1. Admati, A. R.,P. Pfeiderer(1988).A Theory of Intraday Patterns: Volume and Price Variability.Review of Financial Studies,1,3-40.
  2. Amihud, Y.,H. Mendelson(1980).Dealership Market: Market Making with Inventory.Journal of Financial Economics,8,31-53.
  3. Andersen, T. G.(1996).Return Volatility and Trading Volumes: An Information Flow Interpretation of Stochastic Volatility.Journal of Finance,51,69-204.
  4. Andersen, T. G.,T. Bollerslev(1997).Heterogeous Information Arrivals and Return Volatility Dynamics: Uncovering the Long-Run in High Frequency Returns.Journal of Finance,52,957-1006.
  5. Bacon, D. W.,D. G. Watts(1971).Estimating the Transition between Two Intersecting Straight Lines.Biometrika,58,525-534.
  6. Bagehot, W.(1971).The Only Game in Town.Financial Analysts Journal,24,12-14.
  7. Berndt, B. K.,B. H. Hall,R. E. Hall,J. Hausman(1974).Estimation and Inference in Nonlinear Structural Models.Annals of Economic and Social Measurement,4,653-665.
  8. Blume, L.,D. Easley,M. O''Hara(1994).Market Statistics and Technical Analysis: The Role of Volume.Journal of Finance,49,153-181.
  9. Campbell, J. Y.,S. J. Grossman,J. Wang(1993).Trading Volume and Series Correlation in Stock Returns.The Quarterly Journal of Economics,108,905-951.
  10. Cheng, L. T. W.,L. Jiang,R. W. Y. Ng(2004).Information Content of Extended Trading for Index Futures.Journal of Futures Markets,24,861-886.
  11. Clark, P. K.(1973).A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices.Econometrica,41,135-155.
  12. Copeland, T. E.(1976).A Model of Asset Trading under the Assumption of Sequential 1nforation Arrival.Journal of Finance,31,1149-1168.
  13. Copeland, T. E.,D. Galai(1983).Information Effects on the Bid-Ask Spread.Journal of Finance,38,1457-1469.
  14. Daigler, R. T.(1997).Intra-day Futures Price volatility and the Volume of Market Behavior.Journal of Futures Markets,17,45-74.
  15. Daigler, R. T.,M. K. Wiley(1999).The Impact of Trader Type on the Futures Volatility-Volume Relation.Journal of Finance,54,2297-2315.
  16. Demsetz, D. W.(1968).The Cost of Trading.Quarterly Journal of Economics,82,33-53.
  17. Dicky, D. D.,W. A. Fuller(1979).Distribution of the Estimators for Autoregressive Time Series with a Unit Root.Journal of the American Statistical Association,74,427-431.
  18. Engle, R F.(1982).Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of Untied Kingdom Inflation.Econometrica,50,987-1007.
  19. Epps, T. W.(1975).Security Price Changes and Transaction Volumes: Theory and Evidence.American Economic Review,65,586-597.
  20. Epps, T. W.,M. L. Epps(1976).The Stochastic Dependence of Security Price Changes and Transaction Volumes: Implications for the Mixture-of-Distributions Hypothesis.Econometrica,44,305-321.
  21. Foster(1995).Volume-volatility Relationships for Crude Oil Futures Markets.Journal of Futures Markets,15,929-951.
  22. Foster, F. D.,S. Viswanathan(1993).Variations in Trading Volume, Return Volatility and Trading Costs: Evidence on Recent Price Formation Models.Journal of Finance,48,187-212.
  23. Foster, F. D.,S. Viswanathan(1990).A Theory of the Inter-day Variations in Volume, Variance, and Trading Costs in Securities Markets.Review of Financial Studies,3,593-624.
  24. Gallant, A. R,P. E. Rossi,G. Tauchen(1992).Stock Prices and Volume.Review of Financial Studies,5,199-242.
  25. Garman, M.(1976).Market Microstructure.Journal of Financial Economics,3,257-275.
  26. Gerety, M. S.,J. H. Mulherin(1992).Trading Halts and Market Activity: An Analysis of Volume at Open and Close.The Journal of Finance,47,1765-1784.
  27. Gerety, M. S.,J. H. Mulherin(1994).Price Formation on Stock the Evolution of Trading within the Day.Review of Financial Studies,7,609-629.
  28. Glosten, L.,L. Harris(1988).Estimating the Component of the Ask-Bid Spread.Journal of Financial Economics,21,123-142.
  29. Glosten, L.,P. Milgrom(1985).Bid, Ask, and Transaction Prices in a Specialist Market with Heterogeneously Informed Traders.Journal of Financial Economics,13,71-100.
  30. Goc, A. H.,AND G. H. K. Wang(1999).Modeling Nonlinear Dynamics of Daily Futures Price Changes.Journal of Futures Markets,19,325-351.
  31. Grammatikos, T.,A. Saunders(1986).Futures Price Variability: A Test of Maturity and Volume Effects.Journal of Business,59,319-330.
  32. Granger, C. W. J.(1969).Investigating Causal Relations by Econometric Models and Cross-Spectral Models.Econometrica,37,424-438.
  33. Granger, C. W. J.,T. Teräsvirta(1993).Modelling Nonlinear Economic Relationship.Oxford University Press.
  34. Grossman S. J.,M. H. Miller(1988).Liquidity and Market Structure.The Journal of Finance,43,617-637.
  35. Harris, L.(1986).Cross-Security Tests of the Mixture of Distributions Hypothesis.Journal of Financial and Quantitative Analysis,21,39-46.
  36. Harris, L.(1987).Transaction Data Tests of the Mixture of Distributions Hypothesis.Journal of Financial and Quantitative Analysis,22,127-141.
  37. Harris, L.(1986).A Transaction Data Study of Weekly and Intra-daily Patterns in Stock Returns.Journal of Financial Economics,16,99-117.
  38. Hasbrouck J.(1991).Measuring the Information Content of Stock Trades.The Journal of Finance,41,179-207.
  39. Ho, T.,Stoll, H.(1983).The Dynamics of Dealer Markets under Competition.Journal of Finance,38,1053-1074.
  40. Holden, C. W.,A. Subrahmanyam(1992).Long lived Private Information and Imperfect Competition.Journal of Finance,47,247-270.
  41. Jam, P. C.,G.-H. Joh(1988).The Dependence between Hourly Price and trading Volume.Journal of Financial and Quantitative Analysis,23,269-284.
  42. Jarque, C. M.,A. K. Bera(1987).Test for Normality of Observations and Regression Residuals.International Statistical Reviews,55,163-172.
  43. Jennings, R. H.,C. B. Barry(1984).On Information Dissemination and Equilibrium Asset Prices: A Note.Journal of Financial and Quantitative Analysis,19,395-402.
  44. Jones, C. M.,G. Kaul,M. L. Lipson(1994).Transactions, Volume, and Volatility.Review of Financial Studies,7,631-651.
  45. Kim, I. J.,K. Ko,S. K. Noh(2002).Time-Varying Bid-Ask Component of Nikkei 225 Index Futures on SIMEX.Pacific-Basin Finance Journal,10,183-200.
  46. Kocagil, A. E.,Y. Shachmurove(1998).Return-Volume Dynamics in Futures Markets.Journal of Futures Markets,18,399-426.
  47. Kyle A. S.(1985).Continuous Auction and Insider Trading.Econometrica,53,1315-1335.
  48. Lamoureux, C. G.,W. D. Lastrapes(1994).Endogenous Trading Volume and Momentum in Stock-Return Volatility.Journal of Business and Economic Statistics,12,253-260.
  49. Lee, C. M. C.,B. Mucklow,M. J. Ready(1993).Spread, Deapths, and the Impact of Earnings Information: An Intraday Analysis.The Review of Financial Studies,6,345-374.
  50. Luu, J. C.,M. Martens(1993).Testing the Mixture-of-Distributions Hypothesis Using "Realized" Volatility.Journal of Futures Markets,23,661-679.
  51. Ma, C. K.,R. L. Peterson,R. S. Sears(1992).Trading Noise, Adverse Selection, and Intra-day Bid-Ask Spreads in Futures Markets.Journal of Futures Markets,12,519-538.
  52. Maddala G. S.(1977).Econometrics.McGraw-Hill Press.
  53. Malliaris, A. G.,J. L. Urrutia(1998).Volume and Price Relationships: Hypothesis and Test for Agricultural Futures.Journal of Futures Markets,18,53-72.
  54. Martens, M.(2002).Measuring and Forecasting S&P 500 Index-Futures Volatility Using High-Frequency Data.Journal of Futures Markets,22,497-518.
  55. Mclnish, T. H.,R. A. Wood(1985).Intra-day and Overnight Returns and Day-of-the-Week Effects.Journal of Financial Research,8,119-126.
  56. Mcmillan, D. G.,A. E. H. Speight(2002).Nonlinear Dynamics in High-Frequency Intraday Financial Data: Evidence for the UK Long Gilt Futures Market.Journal of Futures Markets,22,1037-1057.
  57. Monoyios, M.,L. Sarno(2002).Mean Reversion in Stock Index Futures bMarkets: A Nonlinear Analysis.Journal of Futures Markets,22,285-314.
  58. Morse, D.(1980).Asymmetrical Information in Security Markets and Trading Volume.Journal of Financial and Quantitative Analysis,15,1129-1148-1172.
  59. Nam, K.,C. S. Pyun,A. C. Arize(2002).Asymmetrical Mean-Reversion and Constrain Proffts: ANST-GARCH Approach.Journal of Empirical Finance,9,563-588.
  60. O''Hara, M.(1995).Market Microstructure Theory.Cambridge, MA:basil Blackwell.
  61. Smirlock, M.,L. Starks(1985).A Further Examination of Stock Price Changes and Transaction Volume.Journal of Financial Research,8,217-225.
  62. Stoll, H.(1978).The Supply of Dealer Services in Security Markets.Journal of Finance,33,1133-1151.
  63. Subrahmanyam, A.(1991).A Theory of Trading in Stock Index Futures.Review of Financial Studies,4,17-51.
  64. Tauchen, G. E.,M. Pitts(1983).The Price Variability-Volume Relationship on Speculative Markets.Econometrica,51,485-505.
  65. Teräsvirta, T.(1994).Specification, Estimation and Evaluation of Smooth Transition Autoregressive Models.Journal of the American Statistical Association,87,208-218.
  66. Tong, H.(1990).Non-linear Time Series: A Dynamical System Approach.Oxford Science.
  67. Tse, Y.(1999).Market Microstructure of FT-SE 100 Index Futures: An Intraday Empirical Analysists.Journal of Futures Markets,19,31-58.
  68. Wang, C.(2002).The Effect of Net Positions by Type of Trader on Volatility in Foreign Currency Futures Masrkets.Journal of Futures Markets,22,427-450.
  69. Werner, I. M.,A. W. Kleidon(1996).U.K. and U.S. Tradind of British Cross-Listed Stocks: An Intraday Analysis of Market Integration.The Review of Financial Studies,9,619-664.
被引用次数
  1. (2008)。臺灣外匯市場日內交易訊息傳遞與效率性之實證研究。臺灣銀行季刊,59(2),65-78。