题名

匯率連動平均利率選擇權:對數常態市場利率模型

并列篇名

Quanto Average Interest Rate Options in a Lognormal Interest Rate Market Model

DOI

10.6545/JFS.2008.16(2).2

作者

吳庭斌(Ting-Pin Wu);陳松男(Son-Nan Chen)

关键词

LIBOR市場模型 ; 平均利率選擇權 ; 匯率連動選擇權 ; LIBOR Market Model ; Average Interest Rate Options ; Quanto Options

期刊名称

財務金融學刊

卷期/出版年月

16卷2期(2008 / 06 / 30)

页次

35 - 67

内容语文

英文

中文摘要

本文根據Amin和Jarrow(1991),將單一貨幣的LIBOR市場模型擴充成跨貨幣的LIBOR市場模型,並在此模型架構下,分別以Vorts(1992)和Levy(1992)所提出的近似方法,求得匯率連動平均利率選擇的近似定價公式,此兩種近似公式經畐蒙地卡羅模擬驗證,準確性非常高,因此對實務應用上,有相當的幫助。

英文摘要

This paper extends the single-currency LMM to the cross-currency LMM based on the Amin and Jarrow (1991) framework, and the resulting model is applied to deriving the approximate pricing formula of the quanto average interest options via two different approximation approaches, presented by Vorst (1992) and Levy (1992). These two approximation formulas have been examined to be very accurate as compared with Monte Carlo simulation. The model calibration procedure is also presented in detail for practical implementation.

主题分类 社會科學 > 經濟學
社會科學 > 財金及會計學
参考文献
  1. Amin K. I.,Jarrow R.(1991).Pircing foreign currency options under stochastic interest rates.Journal of International Money and Finance,10,310-329.
  2. Black, F.(1976).The pricing of commodity contracts.Journal of Financial Economics,3,167-179.
  3. Black, F.,Scholes, M.(1973).The pricing of options and corporate liabilities.Journal of Political Economy,81,637-654.
  4. Brace, A.,Dun, T.A.,Barton, G.(1998).Towards a central interest rate model.Paper presented at the Conference Global Derivatives
  5. Brace, A.,Gatarek, D.,Musiela, M.(1997).The market model of interest rate dynamics.Mathematical Finance,7,127-155.
  6. Brace, A.,Womersley, R.S.(2002).Exact fit to the swaption volatility matrix using semidefinite programming.Paper presented at the ICBI Global Derivatives Conference
  7. Brigo, D.,Mercurio, F.(2001).Interest Rate Models: Theory and Practice.Heidelberg:Springer Verlag.
  8. Cheuk, T.,Vorst, T.(1999).Average interest rate caps.Computational Economics,14,183-196.
  9. Heath, D.,Jarrow, R.,Morton A.(1992).Bond pricing and the term structure of interest rates: A new methodology for contingent claim valuations.Econometrica,60,77-105.
  10. Hull, J.,White, A.(1990).Pricing interest-rate-derivative securities.Review of Financial Studies,3,573-592.
  11. Levy, E.(1992).Pricing European average rate currency options.Journal of International Money and Finance,11,474-491.
  12. Longstaff, F. A.(1995).Hedging interest rate risk with options on average interest rates.Journal of Fixed Income,March,37-45.
  13. Miltersen, K. R.,Sandmann, K.,Sondermann, D.(1997).Closed form solutions for term structure derivatives with log-normal interest rates.The Journal of Finance,52,409-430.
  14. Musiela, M.,Rutkowski, M.(1997).Continuous-time term structure model forward measure approach.Finance and Stochastics,4,261-292.
  15. Rebonato, R.(1999).On the simultaneous calibration of multifactor 9ognormal interest rate models to Black volatilities and to the correlation matrix.Journal of Computational Finance,2,5-27.
  16. Rogeis, C.(1996).Gaussian Errors.Risk,9,42-45.
  17. Schlogl, E.(2002).A multicurrency extension of the lognormal interest rate Market Models.Finance and Stochastics,6,173-196.
  18. Vasicek, O.(1977).An equilibrium characterization of the term structure.Journal of Financial Economics,5,177-188.
  19. Vorst, T.(1992).Prices and hedge ratios of average exchange rate options.International Review of Financial Analysis,1,179-193.
被引用次数
  1. 葉仕國、張森林、林丙輝(2016)。台灣衍生性金融商品定價、避險與套利文獻回顧與展望。臺大管理論叢,27(1),255-304。