题名

The Pricing Measure for Geometric Levy Ptocesses under Incomplete Financial Markets

并列篇名

不完全金融市場之下幾何李維過程之訂價測度

DOI

10.6545/JFS.2009.17(1).4

作者

何淮中(Hwai-Chung Ho);李存修(Tsun-Siou Lee);蔡宏洲(Hung-Chou Tsai)

关键词

李維過程 ; 最小熵 ; 平賭 ; minimal entropy martingale measure ; exponential Levy process ; stochastic exponential of Levy process

期刊名称

財務金融學刊

卷期/出版年月

17卷1期(2009 / 03 / 31)

页次

107 - 142

内容语文

英文

中文摘要

本文以Esscher測度轉換建構幾何李維過程的平賭測度,並籍也指數李維過程與李維過程之隨機指數的關係,證明李維過程仍是平賭過程之若且唯若條件,為李維過程的隨機指數亦是平賭過程。根據此一結果,我們得到Esscher測度為最小熵平時測度的必要條件。

英文摘要

In this paper, Esscher transformation is applied to construct a martingale measure in the framework of geometric Levy process. By means of a relation between exponential Levy process and stochastic exponential of Levy process, it is shown that a Levy process is a martingale if and only if its stochastic exponential is a martingale. While Esche and Schweizer(2005) offer the sufficient condition for the Esscher measure to be the minimal entropy martingale measure, we provide the necessary condition for the statement to be true based on the above result.

主题分类 社會科學 > 經濟學
社會科學 > 財金及會計學
参考文献
  1. Bellini, F.,Frittelli, M.(2002).On the existence of minimax martingale measures.Mathematical Finance,12,1-21.
  2. Bertoin, J.(1996).Levy processes.Cambridge University Press.
  3. Bühlmann, H.,Delbaen, F.,Embrechts, P.,Shiryaev, A.(1996).Noarbitrage, change of measure and conditional Esscher transforms.CWI Quarterly,9,291-317.
  4. Can, P.,Wu, L.(2004).Time-changed Levy processes and option pricing.Journal of Financial Economics,71,113-141.
  5. Chan, T.(1999).Pricing contingent claims on stocks driven by Levy processes.Annals of Applied Probability,9,504-528.
  6. Eberlein, F.,Kluge, W.(2007).Calibration of Levy term structure models.
  7. Esche, F.(2004).Ph.D. Thesis, Technical University of Berlin.
  8. Esche, F.,Schweizer, M.(2005).Minimal entropy preserves the Levy property: how and why.Stochastic Processes and their Applications,115,299-327.
  9. Föllmer, H.,Schweizer, M.,M. H. Davis(eds.),R. J. Elliott.(eds.)(1991).Applied Stochastic Analysis, Stochastic Monographs.London:Gordon and Breach.
  10. Frittelli, M.(2000).The minimal entropy martingale measure and the valuation problem in incomplete markets.Mathematical Finance,10,39-52.
  11. Fujiwara, T.,Miyahara, Y.(2003).The minimal entropy martingale measures for geometric Levy processes.Finance and Stochastics,7,509-531.
  12. Goll, T.,Kallsen, J.(2000).Optimal portfolios for logarithmic utility.Stochastic Processes and their Applications,89,31-48.
  13. Jacod, J.,Shiryaev, A.(2003).Limit Theorems for Stochastic Processes.Berlin:Springer-Verlag.
  14. Kallsen, J.(2000).Optimal portfolios for Exponential Levy processes.Mathematical Methods of Operations Research,51,357-374.
  15. Kallsen, J.,Shiryaev, A.(2002).The Cumulant Process and Esscher's Change of Measure.Finance and Stochastics,6,397-428.
  16. Kyprianou, A.,Schoutens, W.,Wilmott, P.(2005).Exotic option pricing and advanced Levy models.John Wiley & Sons, Ltd.
  17. Merton, R.(1976).Option pricing when underlying stock returns are discontinuous.Journal of Financial Economics,3,125-144.
  18. Mordecki, E.(2002).Optimal stopping and perpetual options for Levy processes.Finance and Stochastics,6,473-493.
  19. Protter, P.(2004).Stochastic integration and differential equations.Berlin:Springer-Verlag.
  20. Sato, K.(1999).Levy Processes and infinitely divisible distributions.Cambridge University Press.
  21. Shiryaev, A.(1999).Essentials of stochastic finance.World Scientific