题名

Elucidating Asymmetric Volatility in Asset Returns and Optimizing Portfolio Choice Using Time-Changed Lévy Processes

并列篇名

運用時間轉換Lévy過程探究資產報酬波動度不對稱及最適投資組合理論

DOI

10.6545/JFS.2010.18(2).5

作者

陳正暉(Chen Zheng-Hui);廖四郎(Liao Szu-Lang)

关键词

最適投資組合 ; 隨機波動度 ; 時間轉換Lévy過程 ; 槓桿效果 ; 波動度回饋效果 ; 波動度不對稱 ; Optimal portfolio choice ; stochastic volatility ; time-changed Lévy processes ; leverage effect ; volatility feedback effect ; asymmetric volatility

期刊名称

財務金融學刊

卷期/出版年月

18卷2期(2010 / 06 / 30)

页次

135 - 166

内容语文

英文

中文摘要

本研究顯著地發展時間轉換Lévy過程在最適投資組合的運用性。在連續Lévy過程模型設定下,槓桿效果直接地產生跨期波動度不對稱避險需求,而波動度回饋效果則透過槓桿效果間接地發生影響。另外,關於無窮跳躍Lévy過程模型設定部分,槓桿效果仍扮演重要的影響角色,而波動度回饋效果僅在短期投資決策中發生作用。最後,在本研究所提出之一般化隨機波動度不對稱資產報酬動態模型下,得出在無窮跳躍的資產動態模型設定下,擴散項仍為重要的決定項。

英文摘要

This study significantly extends the applicability of time-changed Lévy processes to the portfolio optimization. The leverage effect directly induces the intertemporal asymmetric volatility hedging demand, while the volatility feedback effect exerts a minor influence via the leverage effect under the purecontinuous time-changed Lévy process. Furthermore, the leverage effect still plays a major role while the volatility feedback effect just works over the short-term investment horizon under the infinite-jump Lévy process. Based on the proposed general stochastic asymmetric volatility asset return model, we conclude that the diffusion term is an essential determinant of financial modeling for index dynamics given infiniteactivity jump structure.

主题分类 社會科學 > 經濟學
社會科學 > 財金及會計學
参考文献
  1. Carr, P., and L. Wu, 2008 "Leverage Effect, Volatility Feedback, and Self-Exciting Market Disruptions: Disentangling the Multi-Dimensional Variations in S&P 500 Index Options (Working Paper).
  2. Ané, T.,Geman, H.(2000).Order Flow, Transaction Clock, and Normality of Asset Returns.Journal of Finance,55,2259-2284.
  3. Barndorff-Nielsen, O(1998).Processes of Normal Inverse Gaussian Type.Finance and Stochastics,2,41-68.
  4. Bekaert, G.,Wu, G.(2000).Asymmetric Volatility and Risk in Equity Markets.Review of Financial Studies,13,1-42.
  5. Benth, F.,Karlsen, K.,Reikvam, K.(2001).A Note on Portfolio Management under Non-Gaussian Logreturns.International Journal of Theoretical and Applied Finance,4,711-732.
  6. Black, F.(1976).Studies of Stock Price Volatility Changes.Meeting of the American Statistical Association, Business and Economical Statistics Section
  7. Campbell, J. Y.,Hentschel, L.(1992).No News is Good News, An Asymmetric Model of Changing Volatility in Stock Return.Journal of Financial Economics,31,281-318.
  8. Campbell, J.,Lo, A.,MacKinlay, A.(1997).The Econometrics of Financial Markets.Princeton University Press.
  9. Carr, P.,Geman, H.,Madan, D.,Yor, M.(2003).Stochastic Volatility for Lévy Processes.Mathematical Finance,13,345-382.
  10. Carr, P.,Geman, H.,Madan, D.,Yor, M.(2002).The Fine Structure of Asset Returns: An Empirical Investigation.Journal of Business,75,305-332.
  11. Carr, P.,Wu, L.(2007).Stochastic Skew in Currency Options.Journal of Financial Economics,86,213-247.
  12. Carr, P.,Wu, L.(2004).Time-changed Lévy Processes and Option Pricing.Journal of Financial Economics,71,113-141.
  13. Cartea, Á.,Howison, S.(2003).Distinguished Limits of Lévy-Stable processes, and Applications to Option Pricing: Mathematical Institute.University of Oxford.
  14. Chacko, G.,Viceira, L.(2003).Spectral GMM Estimation of Continuous-time Processes.Journal of Econometrics,116,259-292.
  15. Clark, P(1973).A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices.Econometrica,41,135-155.
  16. Cont, R(2001).Empirical Properties of Asset Returns: Stylized Facts and Statistical Issues.Quantitative Finance,1,223-236.
  17. Cont, R.,Tankov, P.(2004).Financial Modelling with Jump Processes.CRC Press.
  18. Cvitanić, J.,Polimenis, V.,Zapatero, F.(2008).Optimal Portfolio Allocation with Higher Moments.Annals of Finance,4,1-28.
  19. Eberlein, E.,Keller, U.(1995).Hyperbolic Distributions in Finance.Bernoulli,281-299.
  20. Fama, E. F(1996).The Behavior of Stock-market Prices.Journal of Business,38,34-105.
  21. Geman, H(2005).From Measure Changes to Time Changes in Asset Pricing.Journal of Banking & Finance,29,2701-2722.
  22. Geman, H(2002).Pure Jump Lévy Processes for Asset Price Modelling.Journal of Banking & Finance,26,1297-1316.
  23. Geman, H.,Ané, T.(1996).Stochastic Subordination.Risk,9,145-149.
  24. Geman, H.,Madan, D.,Yor, M.(2001).Time Changes for Lévy Processes.Mathematical Finance,11,79-96.
  25. Huang, J.,Wu, L.(2004).Specification Analysis of Option Pricing Models Based on Time-changed Lévy Processes.Journal of Finance,59,1405-1439.
  26. Karatzas, I.,Shreve, S.(1991).Brownian Motion and Stochastic Calculus.Springer.
  27. Kraus, A.,Litzenberger, R.(1976).Skewness Preference and the Valuation of Risk Assets.Journal of Finance,31,1085-1100.
  28. Liu, J.,Longstaff, F.,Pan, J.(2003).Dynamic Asset Allocation with Event Risk.Journal of Finance,58,231-259.
  29. Madan, D.,Carr, P.,Chang, E.(1998).The Variance Gamma Process and Option Pricing.European Finance Review,2,79-105.
  30. Madan, D.,Seneta, E.(1990).The Variance Gamma (VG) Model for Share Market Returns.Journal of Business,63,511-524.
  31. Madan, D.,Yor, M.(2008).Representing CGMY and Meixner Levy Processes as Time Change Brownian Motions.Journal of Computational Finance,12,27-47.
  32. Mandelbrot, B(1963).The Variation of Certain Speculative Prices.Journal of Business,36,394-419.
  33. Mendoza, R.,Carr, P.,Linetsky, V.(2008).Time Changed Markov Processes in Unified Credit-Equity Modeling.Mathematical Finance
  34. Merton, R.(1971).Optimum Consumption and Portfolio Rules in a Continuous-time Model.Journal of Economic Theory,3,373-413.
  35. Mo. H.,Wu, L.(2007).International Capital Asset Pricing: Theory and Evidence from Index Options.Journal of Empirical Finance,14,465-498.
  36. Øksendal, B.,Sulem, A.(2005).Applied Stochastic Control of Jump Diffusions.Berlin Heidelberg:Springer-Verlag.
  37. Wu, G(2001).The Determinants of Asymmetric Volatility.Review of Financial Studies,14,837-859.
  38. Wu, L(2006).Dampened Power Law: Reconciling the Tail Behavior of Financial Asset Returns.Journal of Business,79,1445-1474.
  39. Wu, L(2003).Jumps and Dynamic Asset Allocation.Review of Quantitative Finance and Accounting,20,207-243.