题名

Valuation of Asian Interest Rate Options within the BGM Model

并列篇名

平均利率選擇權之評價:BGM利率模型

DOI

10.6545/JFS.2010.18(4).1

作者

吳庭斌(Ting-Pin Wu);傅瑞彬(Jui-Pin Fu);陳松男(Son-Nan Chen)

关键词

亞式利率選擇權 ; BGM模型 ; 平賭過程評價方法 ; Asian Interest Rate Options ; BGM Model ; Martingale Pricing Method

期刊名称

財務金融學刊

卷期/出版年月

18卷4期(2010 / 12 / 31)

页次

1 - 35

内容语文

英文

中文摘要

本文在BGM利率模型架構下,以Vorst近似方法評價亞式利率選擇權。文中修正Longstaff對平均利率的設定,改以LIBOR利率的算數平均數為標的利率,以符合實務。此外,評價公式的參數皆可由市場資料校準,校準方法亦詳細介紹於本文中。我們以蒙地卡羅模擬來驗證公式的準確性,發現此近似公式的評價結果非常接近模擬結果。因此,本文所介紹的評價公式,可以代替蒙地卡羅法,成為市場上評價平均利率選擇權的另一種選擇。

英文摘要

Within the BGM (Brace, Gatarek and Musiela, 1997) interest rate model, this article prices Asian interest rate options via the Vorst (1992) approximation approach. To consist with market practice, we modify the setting of the average rate in Longstaff (1995) by employing the arithmetic average of (market-observable) LIBOR rates. The LIBOR rates are specified directly rather than transformed from the unobservable short rates. Moreover, the parameters in our pricing formula can be easily calibrated from market data. The pricing formula is shown to be sufficiently accurate as compared with Monte Carlo simulation. The calibration procedure and the practical examples are also presented.

主题分类 社會科學 > 經濟學
社會科學 > 財金及會計學
参考文献
  1. Black, F.(1976).The pricing of commodity contracts.Journal of Financial Economics,3,167-179.
  2. Brace, A.,Gatarek, D.,Musiela, M.(1997).The market model of interest rate dynamics.Mathematical Finance,7,127-155.
  3. Brigo, D.,Mercurio, F.(2001).Interest Rate Models: Theory and Practice (Heidelberg, Springer Verlag).Heidelberg:Springer Verlag.
  4. Cheuk, T.,Vorst, T.(1999).Average interest rate caps.Computational Economics,14,183-196.
  5. Heath, D.,Jarrow, R.,Morton, A.(1992).Bond pricing and the term structure of interest rates: A new methodology for contingent claim valuations.Econometrica,60,77-105.
  6. Hull, J.,White, A.(1990).Pricing interest-rate-derivative securities.Review of Financial Studies,3,573-592.
  7. Kemna, A. G. Z.,Vorst, A.C. F.(1990).A pricing method for options based on average asset values.Journal of Banking and Finance,14,113-129.
  8. Levy, E.(1992).Pricing European average rate currency options.Journal of International Money and Finance,11,474-491.
  9. Longstaff, F. A.(1995).Hedging interest rate risk with options on average interest rates.Journal of Fixed Income March,37-45.
  10. Miltersen, K. R.,Sandmann, K.,Sondermann, D.(1997).Closed form solutions for term structure derivatives with log-normal interest rates.The Journal of Finance,52,409-430.
  11. Musiela, M.,Rutkowski, M.(1997).Continuous-time term structure model: forward measure approach.Finance and Stochastics,4,261-292.
  12. Rebonato, R.(1999).On the simultaneous calibration of multifactor lognormal interest rate models to Black volatilities and to the correlation matrix.Journal of Computational Finance,2,5-27.
  13. Rogers, C.(1996).Gaussian Errors.Risk,9,42-45.
  14. Schlogl, E.(2002).A multicurrency extension of the lognormal interest rate Market Models.Finance and Stochastics,6,173-196.
  15. Turnbull, S. M.,Wakeman, L. M.(1991).A quick algorithm for pricing European average options.Journal of Financial and Quantitative Analysis,26,337-389.
  16. Vasicek, O.(1977).An equilibrium characterization of the term structure.Journal of Financial Economics,5,177-188.
  17. Vorst, T.(1992).Prices and hedge ratios of average exchange rate options.International Review of Financial Analysis,1,179-193.
被引用次数
  1. 葉仕國、張森林、林丙輝(2016)。台灣衍生性金融商品定價、避險與套利文獻回顧與展望。臺大管理論叢,27(1),255-304。