题名

Volatility Forecasts of Alternative Bivariate GARCH Models: Evidence from the Stock Markets in Asia

并列篇名

雙變量GARCH模型之波動性預測:以亞洲股票市場為例

DOI

10.6545/JFS.2017.25(4).3

作者

蘇榮斌(Jung-Bin Su)

关键词

Constant conditional correlation ; parameter estimate method ; stock market ; Bivariate GARCH ; volatility forecast ; 常數條件相關係數 ; 參數估計方法 ; 股票市場 ; 雙變量GARCH ; 波動性預測

期刊名称

財務金融學刊

卷期/出版年月

25卷4期(2017 / 12 / 31)

页次

83 - 123

内容语文

英文

中文摘要

This study uses 12 bivariate generalized autoregressive conditional heteroskedasticity (GARCH) models to forecast the volatility of stock-based portfolios in Asia, and then evaluates the forecast performance for the above models. Empirical results show that, the Student’s t does not own better forecast performance, the standard and nonstandard approaches have the same forecast performance, and the constant conditional correlation (CCC) has the best forecast performance among three covariance specifications. Regarding the six GARCH models composed of three covariance specifications and two parameter estimate methods the CCC specification with the standard approach has the best forecast performance irrespective of return distribution setting.

英文摘要

本研究以亞洲股票市場投資組合日報酬率資料評估12個雙變量GARCH模型之波動性預測性能。由實證結果顯示Student's t分配未具較佳預測性能、標準法及非標準法具相同預測性能,而常數條件相關係數為三種共變異數中具最佳預測性能。此外,無論報酬率分配為何,有常數條件相關係數之標準模型具最佳預測性能。

主题分类 社會科學 > 經濟學
社會科學 > 財金及會計學
参考文献
  1. Wang, Kai-Li,Li, Jau-Rong,Hsiao, Meng-Jou(2010).Investigation of dynamic information transmission between DRs and their underlying stocks with exchange rate threshold effects.Journal of Financial Studies,18,93-130.
    連結:
  2. Baba, Yoshi, Robert F. Engle, Dennis K. Kraft, and Kenneth F. Kroner, 1990, Multivariate simultaneous generalized ARCH, Working paper.
  3. Andersen, Torben G.(ed.),Davis, Richard A.(ed.),Kreib, Jens-Peter(ed.),Mikosch, Thomas V.(ed.)(2009).Handbook of Financial Time Series.New York:Springer.
  4. Bauwens, Luc,Laurent, Sébastien,Rombouts, Jeroen V. K.(2006).Multivariate GARCH models: A survey.Journal of Applied Econometrics,21,79-109.
  5. Bollerslev, Tim(1990).Modeling the coherence in short-run nominal exchange rates: A multivariate generalized ARCH model.Review of Economics and Statistics,72,498-505.
  6. Brailsford, Timothy J.,Faff, Robert W.(1996).An evaluation of volatility forecasting techniques.Journal of Banking and Finance,20,419-438.
  7. Braione, Manuela,Scholtes, Nicolas K.(2016).Forecasting value-at-risk under different distributional assumptions.Econometrics,4,1-27.
  8. Cappiello, Lorenzo,Engle, Robert F.,Sheppard, Kevin(2006).Asymmetric dynamics in the correlations of global equity and bond returns.Journal of Financial Econometrics,4,537-572.
  9. Choudhry, Taufiq,Wu, Hao(2008).Forecasting ability of GARCH vs. Kalman filter method: Evidence from daily U.K. time-varying beta.Journal of Forecasting,27,670-689.
  10. Diebold, Francis X.,Mariano, Roberto S.(2002).Comparing predictive accuracy.Journal of Business and Economic Statistics,20,134-144.
  11. Engle, Robert F.(2002).Dynamic conditional correlation: A simple class of multivariate generalized autoregressive conditional heteroskedasticity models.Journal of Business and Economic Statistics,20,339-350.
  12. Engle, Robert F.,Kroner, Kenneth F.(1995).Multivariate simultaneous GARCH.Econometric Theory,11,122-150.
  13. Hakim, Abdul,McAleer, Michael J.(2009).Forecasting conditional correlations in stock, bond and foreign exchange markets.Mathematics and Computers in Simulation,79,2830-2846.
  14. Harvey, David,Leybourne, Stephen,Newbold, Paul(1997).Testing the equality of prediction mean squared errors.International Journal of Forecasting,13,281-291.
  15. Jarque, Carlos M.,Bera, Anil K.(1987).A test for normality of observations and regression residuals.International Statistics Review,55,163-172.
  16. Karmakar, Madhusudan(2010).Information transmission between small and large stocks in the National Stock Exchange in India: An empirical study.Quarterly Review of Economics and Finance,50,110-120.
  17. Klein, Tony,Walther, Thomas(2016).Oil price volatility forecast with mixture memory GARCH.Energy Economics,58,46-58.
  18. Koulakiotis, Athanasios,Dasilas, Apostolos,Papasyriopoulos, Nicholas(2009).Volatility and error transmission spillover effects: Evidence from three European financial regions.Quarterly Review of Economics and Finance,49,858-869.
  19. Li, Hong(2012).The impact of China's stock market reforms on its international stock market linkages.Quarterly Review of Economics and Finance,52,358-368.
  20. Milunovich, George,Thorp, Susan(2006).Valuing volatility spillovers.Global Finance Journal,17,1-22.
  21. Moschini, Gian C.,Myers, Robert J.(2002).Testing for constant hedge ratios in commodity markets: A multivariate GARCH approach.Journal of Empirical Finance,9,589-603.
  22. Sadorsky, Perry(2014).Modeling volatility and conditional correlations between socially responsible investments, gold and oil.Economic Modelling,38,609-618.
  23. Sadorsky, Perry(2012).Correlations and volatility spillovers between oil prices and the stock prices of clean energy and technology companies.Energy Economics,34,248-255.
  24. Segnona, Mawuli,Lux, Thomas,Gupta, Rangan(2017).Modeling and forecasting the volatility of carbon dioxide emission allowance prices: A review and comparison of modern volatility models.Renewable and Sustainable Energy Reviews,69,692-704.
  25. Shen, Zhiwei,Ritter, Matthias(2016).Forecasting volatility of wind power production.Applied Energy,176,295-308.
  26. Singh, Priyanka,Kumar, Brajesh,Pandey, Ajay(2010).Price and volatility spillovers across North American, European, and Asian stock markets.International Review of Financial Analysis,19,55-64.
  27. Su, Jung-Bin(2015).How candlestick features affect the performance of volatility forecasts: Evidence from the stock market.European Journal of Finance,21,486-506.
  28. Su, Jung-Bin(2014).The interrelation of stock markets in China, Taiwan, and Hong Kong and their constructional portfolio's value-at-risk estimate.Journal of Risk Model Validation,8,69-127.
  29. Vortelinos, Dimitrios I.(2017).Forecasting realized volatility: HAR against principal components combining, neural networks, and GARCH.Research in International Business and Finance,39,824-839.
  30. Wang, Ping,Wang, Peijie(2010).Price and volatility spillovers between the Greater China Markets and the developed markets of U.S. and Japan.Global Finance Journal,21,304-317.
  31. Wang, Yudong,Wu, Chongfeng(2012).Forecasting energy market volatility using GARCH models: Can multivariate models beat univariate models?.Energy Economics,34,2167-2181.
  32. Weber, Enzo(2013).Simultaneous stochastic volatility transmission across American equity markets.Quarterly Review of Economics and Finance,53,53-60.
  33. Wei, John K. C.,Liu, Yu-Jane,Yang, Chau-Chen,Chaung, Guey-Shiang(1995).Volatility and price change spillover effects across the developed and emerging markets.Pacific-Basin Finance Journal,3,113-136.