题名

Information Content of Continuous and Jump Decomposition of Variances

并列篇名

連續及躍動變異部份之訊息內涵

DOI

10.6545/JFS.201809_26(3).0004

作者

曾祺峰(Chi-Feng Tzeng);蔡子晧(Jeffrey Tzuhao Tsai)

关键词

Volatility prediction ; model free implied volatility ; realized variance ; conditional jump intensity ; 波動度預測 ; 無模型隱含波動度 ; 已實現變異值 ; 條件式躍動頻率

期刊名称

財務金融學刊

卷期/出版年月

26卷3期(2018 / 09 / 30)

页次

117 - 139

内容语文

英文

中文摘要

The GARCH models and heterogeneous autoregressive (HAR) model are used to evaluate the information about the continuous/jump compositions of variances. The continuous/jump components of the implied variance are extracted from FTSE 100 data. We compare the performance of the GARCH models in terms of sample fit and out-of-sample performance measures. Our results suggest that both the realized variance and model-free implied volatility are important information resources in variance forecasting. Using the HAR model, we find that the realized measurements contain incremental information relative to implied variances. Implied volatilities are improved as the GB2 distribution fitting is applied.

英文摘要

本文利用GARCH模型與HAR模型檢定連續/躍動部份變異之訊息內涵。從FTSE 100資料中取出連續/躍動隱含變異值,並以樣本內配適及樣本外預測力比較GARCH模型。在模型中已實現變異值及無模型隱含波動度皆是重要訊息來源。運用HAR模型,本文發現已實現變異值相對於隱含變異具有增額訊息;透過GB2分配配適能改進隱含波動之訊息內涵。

主题分类 社會科學 > 經濟學
社會科學 > 財金及會計學
参考文献
  1. Andersen, Torben G.,Bollerslev, Tim,Diebold, Francis X.(2007).Roughing it up, including jump components in the measurement, modelling and forecasting of return volatility.Review of Economics and Statistics,89,701-720.
  2. Andersen, Torben G.,Bollerslev, Tim,Meddahi, Nour(2004).Analytical evaluation of volatility of volatility forecasts.International Economic Review,45,1079-1110.
  3. Bakshi, Gurdip,Cao, Charles,Chen, Zhiwu(1997).Empirical performance of alternative option pricing models.Journal of Finance,52,2003-2049.
  4. Bali, Turan G.,Weinbaum, David(2007).A conditional extreme value volatility estimator based on high-frequency returns.Journal of Economic Dynamics and Control,31,361-397.
  5. Barndorff-Nielsen, Ole E.,Shephard, Neil(2004).Power and bipower variation with stochastic volatility and jumps.Journal of Financial Econometrics,2,1-37.
  6. Barndorff-Nielsen, Ole E.,Shephard, Neil(2001).Non-Gaussian Ornstein-Uhlenbeck based models and some of their uses in financial economics.Journal of the Royal Statistical Society,63,167-241.
  7. Becker, Ralf,Clements, Adam E.,White, Scoot I.(2007).Do implied volatility provide any information beyond that captured in model-based volatility forecasts.Journal of Banking and Finance,31,2535-2549.
  8. Blair, Bevan J.,Poon, Ser-Huang,Taylor, Stephen J.(2001).Forecasting S&P 100 volatility: The incremental information content of implied volatilities and high-frequency index returns.Journal of Econometrics,105,5-26.
  9. Bollerslev, Tim(1987).A conditionally heteroskedastic time series model for speculative prices and rates of return.Review of Economics and Statistics,69,542-547.
  10. Busch, Thomas,Christensen, Bent J.,Nielsen, Morten Ø.(2011).The role of implied volatility in forecasting future realized volatility and jumps in foreign exchange, stock, and bond markets.Journal of Econometrics,160,48-57.
  11. Chan, Wing Hong,Maheu, John M.(2002).Conditional jump dynamics in stock market returns.Journal of Business and Economics Statistics,20,377-389.
  12. Chang, Kai-Jiun, Mao-Wei Hung, and Yaw-Huei Wang, 2014, Model free implied volatilities from alternative implementation approaches and their information contents for future volatility, Working paper.
  13. Christoffersen, Peter,Feunou, Bruno,Jacobs, Kris,Meddahi, Nour(2013).The economic value of realized volatility: Using high-frequency returns for option valuation.Journal of Financial and Quantitative Analysis,49,663-697.
  14. Christoffersen, Peter,Feunou, Bruno,Jeon, Yoontae(2015).Option valuation with observable volatility and jump dynamics.Journal of Banking and Finance,61,S101-S120.
  15. Christoffersen, Peter,Jacobs, Kris,Ornthanalai, Chayawat(2012).Dynamic jump intensities and risk premiums: Evidence from S&P500 returns and options.Journal of Financial Economics,106,447-472.
  16. Corsi, Fulvio(2009).A simple approximate long-memory model of realized volatility.Journal of Financial Econometrics,7,174-196.
  17. Daal, Elton,Naka, Atsuyuki,Yu, Jung-Suk(2007).Volatility clustering, leverage effects, and jump dynamics in the U.S. and emerging Asian equity markets.Journal of Banking and Finance,31,2751-2769.
  18. Diebold, Francis X.,Mariano, Robert S.(1995).Comparing predictive accuracy.Journal of Business and Economic Statistics,13,252-263.
  19. Duffie, Darrell,Pan, Jun,Singleton, Kenneth(2000).Transform analysis and asset pricing for affine jump-diffusions.Econometrica,68,1343-1376.
  20. Ederington, Louis H.,Guan, Wei(2002).Measuring implied volatility: Is an average better? Which average?.Journal of Futures Markets,22,811-837.
  21. Eraker, Bjorn(2004).Do stock prices and volatility jump? Reconciling evidence from spot and option prices.Journal of Finance,59,1367-1404.
  22. Fan, Rui,Taylor, Stephen J.,Sandri, Metteo(2017).Density forecast comparisons for stock prices, obtained from high-frequency returns, and daily option prices.Journal of Futures Market,38,83-103.
  23. Giot, Pierre,Laurent, Sebastien(2007).The information content of implied volatility in light of the jump/continuous decomposition of realized volatility.Journal of Futures Markets,27,337-359.
  24. Huang, Xin,Tauchen, George(2005).The relative contribution of jumps to total price variance.Journal of Financial Econometrics,3,456-499.
  25. Jiang, George J.,Tian, Yisong S.(2005).The model-free implied volatility and its information content.Review of Financial Studies,18,1305-1342.
  26. Maheu, John M.,McCurdy, Thomas H.(2011).Do high-frequency measures of volatility improve forecasts of return distributions?.Journal of Econometrics,160,69-76.
  27. Maheu, John M.,McCurdy, Thomas H.(2004).News arrival, jump dynamics, and volatility components for individual stock returns.Journal of Finance,59,755-793.
  28. Martens, Martin,Zein, Jason(2004).Predicting financial volatility: High-Frequency time-series forecasts vis-à-vis implied volatility.Journal of Futures Markets,24,1005-1028.
  29. Martin, Gael M.,Reidy, Andrew,Wright, Jill(2009).Does the option market produce superior forecasts of noise-corrected volatility measures.Journal of Applied Econometrics,24,77-104.
  30. Pong, Shiuyan,Shackleton, Mark B.,Taylor, Stephen J.,Xu, Xinzhong(2004).Forecasting currency volatility: A comparison of implied volatilities and AR(FI)MA models.Journal of Banking and Finance,28,2541-2563.
  31. Taylor, Stephen J., Rafal M. Wojakowski, and Gang Xu, 2009, Information flow, volatility measurements, and jump prediction, Working paper.