题名

Analytical Approximations for American Options: The Binary Power Option Approach

并列篇名

美式選擇權之解析近似:二元乘冪選擇權法

DOI

10.6545/JFS.201809_26(3).0003

作者

江彌修(Mi-Hsiu Chiang);傅信豪(Hsin-Hao Fu);黃以達(Yi-Ta Huang);駱建陵(Chien-Ling Lo);石百達(Pai-Ta Shih)

关键词

American option ; binary power option ; early exercise premium ; 美式選擇權 ; 二元乘冪選擇權 ; 提早履約溢酬

期刊名称

財務金融學刊

卷期/出版年月

26卷3期(2018 / 09 / 30)

页次

91 - 116

内容语文

英文

中文摘要

This study proposes an innovative approach to value American options. Using a portfolio of binary power options to replicate the early exercise premium, we modify Medvedev and Scaillet (2010) to derive an analytical approximation of American option values under the Black-Scholes framework. Compared with Medvedev and Scaillet (2010), our approach provides a much simpler functional form of the early exercise premium that can be easily extended to high-order series expansions. The numerical results show that the pricing performance of our method is closely comparable to that of Medvedev and Scaillet (2010) and superior to that of Barone-Adesi and Whaley (1987).

英文摘要

本研究提出一創新方法評價美式選擇權。利用二元乘冪選擇權之投資組合複製提早履約溢酬,本文在Black-Scholes架構下修改Medvedev and Scaillet (2010)方法,導出美式選擇權價格之解析近似。相較於Medvedev and Scaillet (2010),本研究提供更為簡易之函數型式,並易於應用至高階級數。結果發現,本文方法堪比Medvedev and Scaillet (2010)所呈現之結果,並優於Barone-Adesi and Whaley (1987)。

主题分类 社會科學 > 經濟學
社會科學 > 財金及會計學
参考文献
  1. Barone-Adesi, Giovanni,Whaley, Robert E.(1987).Efficient analytical approximation of American option values.Journal of Finance,42,301-320.
  2. Broadie, Mark,Detemple, Jerome(1996).American option valuation: New bounds, approximations, and a comparison of existing methods.Review of Financial Studies,9,1211-1250.
  3. Broadie, Mark,Detemple, Jerome(2004).Option pricing: Valuation models and applications.Management Science,50,1145-1177.
  4. Broadie, Mark,Glasserman, Paul(1997).Pricing American-style securities using simulation.Journal of Economic Dynamics and Control,21,1323-1352.
  5. Chung, San-Lin,Shih, Pai-Ta(2007).Generalized Cox-Ross-Rubinstein binomial models.Management Science,53,508-520.
  6. Chung, San-Lin,Shih, Pai-Ta(2009).Static hedging and pricing American options.Journal of Banking and Finance,33,2140-2149.
  7. Figlewski, Stephen,Gao, Bin(1999).The adaptive mesh model: A new approach to efficient option pricing.Journal of Financial Economics,53,313-351.
  8. Geske, Robert,Johnson, Herb E.(1984).The American put option valued analytically.Journal of Finance,39,1511-1524.
  9. Heston, Steve,Zhou, Guofu(2000).On the rate of convergence of discrete-time contingent claims.Mathematical Finance,10,53-75.
  10. Heston, Steven L.(1993).A closed form solution for options with stochastic volatility with applications to bond and currency options.Review of Financial Studies,6,327-343.
  11. Ju, Nengjiu(1998).Pricing an American option by approximating its early exercise boundary as a piecewise exponential function.Review of Financial Studies,11,627-646.
  12. Longstaff, Francis A.,Schwartz, Eduardo S.(2001).Valuing American options by simulations: A simple least-squares approach.Review of Financial Studies,14,113-147.
  13. Macovschi, Stefan,Quittard-Pinon, François(2006).On the pricing of power and other polynomial options.Journal of Derivatives,13,61-72.
  14. Medvedev, Alexey,Scaillet, Olivier(2010).Pricing American options under stochastic volatility and stochastic interest rates.Journal of Financial Еconomics,98,145-159.
  15. Sullivan, Michael A.(2000).Valuing American put options using Gaussian quadrature.Review of Financial Studies,13,75-94.
  16. Zhang, Jin E.,Li, Tiecheng(2010).Pricing and hedging American options analytically: A perturbation method.Mathematical Finance,20,59-87.
被引用次数
  1. 黃明官,吳明遠(2019).Using the Expected Final Return Model to Create Optimal Trading Strategy for Options: A Theoretical and Empirical Study Based on Evidence from Short Combination Strategy.財務金融學刊,27(3),111-145.