题名

大數據在石化業應用之初探

并列篇名

A Preliminary Application of Big Data Analysis in Petrochemical Industry

作者

趙仁德(Ren Der Chao)

关键词

物聯網 ; 膨脹機 ; 大數據分析 ; 資料視覺化 ; 資料探勘 ; 人工智慧 ; Internet of Things ; Expander ; Big Data Analysis ; Data Visualization ; Data Mining ; Artificial Intelligence

期刊名称

石油季刊

卷期/出版年月

54卷4期(2018 / 12 / 01)

页次

65 - 79

内容语文

繁體中文

中文摘要

隨著物聯網科技蓬勃發展,帶動企業研發大數據分析,利用人工智慧演算法將多元數據轉為知識,以提升決策效能。中油公司面對內外環境的變遷,兼顧經濟、環保及社會多面向需求,亟需透過「多元數據收集與資料視覺化」協助跨領域溝通,並藉由「數據整合與人工智慧」研發更精準預測模式,以發展智能決策。本文首先說明在巨量化的浪潮下,大數據分析的起因與可能衍生問題,其次介紹企業建置大數據平台的系統架構與資料視覺化功能,最後以石化廠膨脹機設備異常偵測為例,說明資料視覺化設計與數據分析建模的過程。本研究使用五種分類演算法進行分析,研究發現,預測模型平均準確率達99.9%,其中以隨機森林演算法最優,提供後續數據分析應用之參考。

英文摘要

Internet of Things (IOT) revolution drives the Big Data Analysis, enabling companies to use artificial intelligence in turning data into actionable knowledge for improving decision-making. Taking into account the needs of the economy, the environment and the society, CPC Corporation Taiwan proposes "data visualization" to help cross-disciplinary communication and develops more precise "artificial intelligence" models to provide intelligent forecasting. This paper presents an application of Big Data Analysis in the CPC petrochemical factory. Firstly, the evolution and features in big data application are described. Secondly, a Big Data architecture for Big Data Analysis is depicted. Next, this paper illustrates the process of visualization design for data analysis. Then, the preliminary problem of the expander anomaly in petrochemical plants is discussed. Finally, this study tackles different classification algorithms for expander anomaly detection. It is found that the average accuracy of five prediction models is 99.9%. Excellent predictive algorithm is Random Forest, which provides for future research.

主题分类 工程學 > 礦冶與冶金工程
社會科學 > 經濟學
参考文献
  1. 郭至恩,張純明,高振山,許世希,陳振和,蔡瑜潔,梁勝富(2018)。先期開發與評估應用於石化業關鍵設備之智慧預知維護方法。勞動及職業安全衛生研究季刊,26(1),1-8。
    連結:
  2. 政府資料開放平台,https://data.gov.tw/datasets/search?qs=&order=pubdate&type=dataset
  3. 台灣中油 106 年黑客松活動專區,https://new.cpc.com.tw/information/business-more.aspx?id=131
  4. Baesens, B.,Bapna, R.,Marsden, J. R.,Vanthienen, J.,Zhao, J. L.(2016).Transformational issues of big data and analytics in networked business.MIS Quarterly,40(4)
  5. Chen, H.,Chiang, R. H. L.,Storey, V. C.(2012).Business intelligence and analytics: From big data to big impact.MIS Quarterly,36(4),1165-1188.
  6. El-thalji Idriss, Erkki(2015).Jantunen, A summary of fault modelling and predictive health monitoring of rolling element bearings.Mechanical Systems and Signal Processing,60,252-272.
  7. Laney, Douglas(2012).The Importance of ‘Big Data’: A Definition.Gartner.
  8. Raschka, S.(2015).Python Machine Learning.Packt Publishing.
  9. Sun J.,Yan, C.,Wen, J.(2018).Intelligent bearing fault diagnosis method combining compressed data acquisition and deep learning.IEEE Transactions on Instrumentation and Measurement,67(1),185-195.
  10. Varun Grover, Roger,Chiang, H.L.,Liang, Ting-Peng,Zhang, Dongsong(2018).Ting-Peng Liang & Dongsong Zhang, Creating Strategic Business Value from Big Data Analytics: A Research Framework.Journal of Management Information Systems,35(2),388-423.
  11. Xu, X(2017).A belief rule-based expert system for fault diagnosis of marine diesel engines.IEEE Transactions on Systems, Man Cybernetics: Systems,99,1-17.
  12. 李明貫,劉登進(2005)。煉油廠資訊整合與應用。石油季刊,41(1),81-105。
  13. 林東清(2018).資訊管理 e 化企業的核心競爭能力.智勝文化.
  14. 林茂文,CIO 要讓 IT 從輔助轉型為決策支援, IT home https://www.ithome.com.tw/node/70387
  15. 許瑞宋,侯秀琴,洪慧芳(2014).哈佛教你精通大數.遠見天下文化出版股份有限公司.
  16. 陳榮輝(2015)。由大數據至智慧工業製造的數據分析與應用。化工,62(3),76-87。
  17. 楊敦翔,林淑娟(2018)。大數據中心開啟營運新未來。石油通訊,800,59-60。
  18. 楊敦翔,林淑娟(2018)。大數據中心啟動示範案例。石油通訊,802,38-39。
  19. 趙仁德(2018)。智慧大數據,挖寶新商機。石油通訊,804,44。
  20. 趙仁德(2017)。視覺化工具在企業應用之契機。政府機關資訊通報,348