题名

鈣鈦礦太陽能模組開發進展

并列篇名

Progress in Development of Perovskite Solar Module

作者

黃冠傑(Kuan-Chieh Huang)

关键词

鈣鈦礦太陽能模組 ; 真空鍍膜 ; 封裝 ; Perovskite solar module ; Vacuum deposition ; Encapsulation

期刊名称

石油季刊

卷期/出版年月

57卷4期(2021 / 12 / 01)

页次

85 - 96

内容语文

繁體中文

中文摘要

台灣中油公司從2016年開始致力於鈣鈦礦太陽能模組(Perovskite solar module)自主研發,至今歷時五年,目標是希望將該模組確實導入生活應用,並增加商品化的可能性。目前公司已能一手包辦整個模組製程運作,主要採用半自動化、單次多片產出作業方式,其中技術特色包括,適用於大面積(≧ 5 cm × 5 cm)、完全真空鍍膜(Vacuum deposition)、雷射切割(Laser scribing)、金屬遮罩(Metal mask)導入以及封裝製程(Encapsulation)。現階段所製得之模組(結構組成:玻璃(Glass)/氧化銦錫(ITO)/非化學計量比氧化鎳(NiO_x)/鈣鈦礦(FAPbI_3)/富勒烯(C_(60))/鋁(Al),面積:5 cm × 5 cm)於AM1.5G條件進行量測,可獲得最大輸出功率(P_(max))及光電轉換效率(PCE)分別約為37.5 mW及4.01%結果,相關製程所使用的基板溫度為110 °C,而FAPbI_3薄膜的厚度為500 nm。在面積10cm × 10 cm模組方面,目前如此尺寸的模組於大氣環境下已能提供約142.1 mW(P_(max))及3.24%(PCE)(AM1.5G量測條件)之性能表現,並藉由UV膠水的封裝效力,該模組P_(max)可以在大氣環境下維持穩定不遞減長達至少一週時間。

英文摘要

A perovskite solar module has been developed for practical use and commercialization in CPC Corporation, Taiwan since 2016. The processes of the module, featuring production of large-area (≧ 5 cm × 5 cm) device, totally vacuum deposition, laser scribing, mediation of metal mask, and encapsulation, are accomplished using semi-automation and mass production techniques. The module with 5 cm × 5 cm in surface area, consisting of glass, ITO, NiO_x, perovskite FAPbI_3, C_(60), and Al, can deliver the best maximum output power (P_(max)) of 37.5 mW and power-conversion efficiency (PCE) of 4.01% under AM1.5G illumination so far. The substrate temperature and the FAPbI3 thickness are controlled to be 110 °C and 500 nm, respectively, for the relevant processes. Moreover, 142.1 mW (P_(max)) and 3.24% (PCE) can be generated by a module having surface area of 10 cm × 10 cm at AM1.5G in the atmosphere. Such a module is encapsulated by UV encapsulant and placed in the atmosphere for stability evaluation. The performance in P_(max) of the encapsulated module shows a steady trend at least in a duration of one week.

主题分类 工程學 > 礦冶與冶金工程
社會科學 > 經濟學
参考文献
  1. 網址:https://www.nrel.gov/pv/cell-efficiency.html
  2. Borchert, J.,Milot, R. L.,Patel, J. B.,Davies, C. L.,Wright, A. D.,Maestro, L. M.,Snaith, H. J.,Herz, L. M.,Johnston, M. B.(2017).ACS Energy Lett.,2,2799.
  3. Galagan, Y.(2020).J. Phys. Energy,2,021004.
  4. Islam, M. B.,Yanagida, M.,Shirai, Y.,Nabetani, Y.,Miyano, K.(2017).ACS Omega,2,2291.
  5. Jang, W.-L.,Lu, Y.-M.,Hwang, W.-S.,Hsiung, T.-L.,Wang, H. P.(2009).Appl. Phys. Lett.,94,062103.
  6. Jeong(2021).Nature,591,381.
  7. Kojima, A.,Teshima, K.,Shirai, Y.,Miyasaka, T.(2009).J. Am. Chem. Soc.,131,6050.
  8. Liu, Y.,Akin, S.,Hinderhofer, A.,Eickemeyer, F. T.,Zhu, H.,Seo, J.-Y.,Zhang, J.,Schreiber, F.,Zhang, H.,Zakeeruddin, S. M.,Hagfeldt, A.,Dar, M. I.,Grätzel, M.(2020).Angew. Chem. Int. Ed.,59,15688.
  9. Lu(2020).Science,370,eabb8985.
  10. Lu, Y. M.,Hwang, W. S.,Yang, J. S.(2002).Surf. Coat. Technol.,155,231.
  11. Sławek, A.,Starowicz, Z.,Lipiński, M.(2021).Materials,14,3295.
  12. Xu, F.,Tian, Y.,Wang, W.,Zhu, Y.,Zeng, L.,Yao, B.,Fang, Z.,Xu, H.,Xu, R.,Xu, F.,Hong, F.,Wang, L.(2019).J. Mater. Sci. Mater. Electron.,30,8381.
  13. You, J.,Meng, L.,Song, T.-B.,Guo, T.-F.,Yang, Y. M.,Chang, W.-H.,Hong, Z.,Chen, H.,Zhou, H.,Chen, Q.,Liu, Y.,Marco, N. D.,Yang, Y.(2016).Nat. Nanotech.,11,7581.
  14. Zhang, M.,Zhang, F.,Wang, Y.,Zhu, L.,Hu, Y.,Lou, Z.,Hou, Y.,Teng, F.(2018).Sci. Rep.,8,11157.
  15. Zhao, X.,Chen, J.,Park, N.-G.(2019).Sol. RRL,1800339.
  16. 游勝閔,魏松煙,孫文檠(2015)。工業材料雜誌,345,55-62。
  17. 黃冠傑,賴立中,利宗冠,康文成(2017)。石油季刊,53(4),57-66。