题名

探討共病測量方法於健保次級資料之應用

并列篇名

Assessing Measures of Comorbidity Using National Health Insurance Databases

DOI

10.6288/TJPH2010-29-03-01

作者

朱育增(Yu-Tseng Chu);吳肖琪(Shiao-Chi Wu);李玉春(Yu-Chun Lee);賴美淑(Mei-Shu Lai);譚醒朝(Sing-Chew Tam)

关键词

共病 ; CCI ; 次級資料 ; 行政申報資料 ; comorbidity ; CCI Charlson Comorbidity Index ; administrative data ; claim data

期刊名称

台灣公共衛生雜誌

卷期/出版年月

29卷3期(2010 / 06 / 01)

页次

191 - 200

内容语文

繁體中文

中文摘要

目標:全民健保次級資料已成為醫療服務研究重要之資料來源,如何適當測量病人共病(合併症;comorbidity)情形,為一重要議題,然國內尚未有研究針對不同學者發展之共病測量方法及其適用情況進行實證探討。方法:採回溯性世代研究,選取5種共病方法進行比較,包括Deyo等、Romano等(D-M's)、D'Hoore等三種版本之Charlson Comorbidity Index(CCI)、以次級資料發展之Elixhauser、及以藥物處方情形發展之Chronic Disease Score。以2002年因慢性腎臟疾病、肺炎住院之病人為對象,比較不同方法預測院內及住院一年內死亡情形之差異。共病採用「類別」及「權重」二種分析方式。判斷共病之資料期間或來源,包括「當次住院」、「當次併前一年住院」、「當次併前一年住院及門診」三種。以邏輯斯迴歸之c統計量比較各方法之相對表現。結果:類別模式下,以D-M's CCI及Elixhauser方法表現較佳。權重模式時,以D-M's CCI表現較佳。對CCI方法,以當次併前一年住院資料表現最佳。以類別模式之Elixhauser預測院內死亡情形,僅以當次住院資料表現最佳。增加住院前門診就醫資料則無法改進預測力。結論:三種版本之CCI方法中,以D-M's CCI表現較佳,建議未來研究者可選用此方法,並使用「當次併前一年住院」資料。當研究樣本數夠大,可採類別變項之D-M's CCI或Elixhauser方法。使用Elixhauser預測院內死亡情形時,建議可僅使用「當次住院」資料。當研究樣本數小採計算權重分數時,建議使用D-M's CCI。

英文摘要

Objectives: National Health Insurance databases have become an important resource for studies in health services research. It is important to measure comorbidity; however, there has been no study to investigate the performance of the various available claims-based measures of comorbidity in Taiwan. Methods: Five different measures of comorbidity including Deyo's Charlson Comorbidity Index (CCI), D-M's CCI, D'Hoore's CCI, Elixhauser and Chronic Disease Score (CDS), were chosen for investigation in this retrospective cohort study. We compared the performance of the five measures of comorbidity in predicting in-hospital and one-year mortality among patients with chronic renal disease and pneumonia. The measures of comorbidity were implemented as individual components (the presence or absence of the comorbid condition), and also as an index (weighted sum of comorbidity indicators). The measures of comorbidity were created based on 3 sources of data: the index hospitalization, the index and prior hospitalizations, and the index and prior hospitalizations as well as outpatient visits. The c-statistics of logistic regression were used to compare performance. Results: Better discrimination was achieved with the D-M's CCI or the Elixhauser method when using individual components. When measures of comorbidity were used as indices, better discrimination was achieved with the D-M's CCI. For CCI methods, patient information available from both the index and prior hospitalizations yielded the best results. For the Elixhauser method, patient information available from the index hospitalization yielded the best results when predicting in-hospital death. Adding prior outpatient data did not improve the performance of the measures. Conclusions: D-M's CCI performed best, and future investigators might consider this method. When the sample size is large enough, D-M's CCI or the Elixhauser method could be implemented as the individual components. If the sample size is small, then D-M's CCI used as an index and information from the index and prior hospitalizations would be more appropriate.

主题分类 醫藥衛生 > 預防保健與衛生學
醫藥衛生 > 社會醫學
参考文献
  1. 朱育增、吳肖琪(2009)。回顧與探討次級資料適用之共病測量方法。台灣衛誌,29,8-21。
    連結:
  2. 吳肖琪、簡麗年、吳義勇(2004)。探討術前合併症指標與醫療利用及手術結果之關聯性-以全股(髖)關節置換健保申報資料為例。台灣衛誌,23,121-129。
    連結:
  3. Alan, A(2002).Categorical Data Analysis.Hoboken:John Wiley & Sons, Inc.
  4. Baldwin, LM,Klabunde, CN,Green, P,Barlow, W,Wright, G(2006).In search of the perfect comorbidity measure for use with administrative claims data: does it exist?.Med Care,44,745-753.
  5. Charlson, ME(1993).Adapting a clinical comorbidity index for use with ICD-9-CM administrative data: a response.J Clin Epidemiol,46,1083-1084.
  6. Charlson, ME,Pompei, P,Ales, KL,MacKenzie, CR(1987).A new method of classifying prognostic comorbidity in longitudinal studies: development and validation.J Chronic Dis,40,373-383.
  7. Clark, DO,Korff, MV,Saunders, K,Baluch, WM,Simon, GE(1995).A chronic disease score with empirically derived weights.Med Care,33,783-795.
  8. Deyo, RA,Cherkin, DC,Ciol, MA(1992).Adapting a clinical comorbidity index for use with ICD-9-CM administrative databases.J Clin Epidemiol,45,613-619.
  9. D''Hoore, W,Sicotte, C,Tilquin, C(1993).Risk adjustment in outcome assessment: the Charlson comorbidity index.Methods Inf Med,32,382-387.
  10. Dominick, KL,Dudley, TK,Coffman, CJ,Bosworth, HB(2005).Comparison of three comorbidity measures for predicting health service use in patients with osteoarthritis.Arthritis Rheum,53,666-672.
  11. Drey, N,Roderick, P,Mullee, M,Rogerson, M(2003).A population-based study of the incidence and outcomes of diagnosed chronic kidney disease.Am J Kidney Dis,41,677-684.
  12. Elixhauser, A,Steiner, C,Harris, DR,Coffey, RM(1998).Comorbidity measures for use with administrative data.Med Care,36,8-27.
  13. Feinstein, AR(1970).The pre-therapeutic classification of co-morbidity in chronic disease.J Chronic Dis,23,455-468.
  14. Glynn, RJ,Monane, M,Gurwitz, JH,Choodnovskiy, I,Avorn, J(1999).Aging, comorbidity, and reduced rates of drug treatment for diabetes mellitus.J Clin Epidemiol,52,781-790.
  15. Herzog, CA,Muster, HA,Li, S,Collins, AJ(2004).Impact of congestive heart failure, chronic kidney disease, and anemia on survival in the Medicare population.J Card Fail,10,467-472.
  16. Iezzoni , LI(1997).Assessing quality using administrative data.Ann Intern Med,127,666-674.
  17. Iezzoni, LI(2003).Risk Adjustment for Measuring Health Care Outcomes.Chicago:Health Administration Press.
  18. Johnson, RE,Hornbrook, MC,Nichols, GA(1997).Replicating the chronic disease score (CDS) from automated pharmacy data.J Clin Epidemiol,47,1191-1199.
  19. Johnston, JA,Wagner, DP,Timmons, S,Welsh, D,Tsevat, J,Render, ML(2002).Impact of different measures of comorbid disease on predicted mortality of intensive care unit patients.Med Care,40,929-940.
  20. Kane, RL(1997).Understanding Health Care Outcomes Research.Gaithersburg:Aspen Publishers.
  21. Keith,DS,Nichols, GA,Gullion, CM,Brown, JB,Smith, DH(2004).Longitudinal follow-up and outcomes among a population with chronic kidney disease in a large managed care organization.Arch Intern Med,164,659-663.
  22. Menendez, R,Ferrando, D,Valles, JM,Martinez, E,Perpina, M(2001).Initial risk class and length of hospital stay in community-acquired pneumonia.Eur Respir J,18,151-156.
  23. Peduzzi, P,Concato, J,Kemper, E,Holford, TR,Feinstein, AR(1996).A simulation study of the number of events per variable in logistic regression analysis.J Clin Epidemiol,49,1373-1379.
  24. Radley, DC,Gottlieb, DJ,Fisher, ES,Tosteson, ANA(2008).Comorbidity risk-adjustment strategies are comparable among persons with hip fracture.J Clin Epidemiol,61,580-587.
  25. Redelmeier, DA,Tan, SH,Booth, GL(1998).The treatment of unrelated disorders in patients with chronic medical diseases.N Engl J Med,338,1516-1520.
  26. Romano, PS,Roos, LL,Jollis, JG(1993).Adapting a clinical comorbidity index for use with ICD-9-CM administrative data: differing perspectives.J Clin Epidemiol,46,1075-1079.
  27. Schneeweiss, S,Maclure, M(2000).Use of comorbidity scores for control of confounding in studies using administrative databases.Int J Epidemiol,29,891-898.
  28. Schneeweiss, S,Seeger, JD,Maclure, M,Wang, PS,Avorn, J,Glynn, RJ(2001).Performance of comorbidity scores to control for confounding in epidemiologic studies using claims data.Am J Epidemiol,154,854-864.
  29. Schneeweiss, S,Wang, PS,Avorn, J,Glynn, RJ(2003).Improved comorbidity adjustment for predicting mortality in Medicare populations.Health Serv Res,38,1103-1120.
  30. Schneeweiss, S,Wang, PS,Avorn, J,Maclure, M,Levin, R,Glynn, RJ(2004).Consistency of performance ranking of comorbidity adjustment scores in Canadian and US utilization data.J Gen Intern Med,19,444-450.
  31. Southern, DA,Quan, H,Ghali, WA(2004).Comparison of the Elixhauser and Charlson/Deyo methods of comorbidity measurement in administrative data.Med Care,42,355-360.
  32. Stukenborg, GJ,Wagner, DP,Connors Jr, AF(2001).Comparison of the performance of two comorbidity measures, with and without information from prior hospitalizations.Med Care,39,727-739.
  33. Wang, PS,Walker, A,Tsuang, M,Orav, EJ,Levin, R,Avorn, J(2000).Strategies for improving comorbidity measures based on Medicare and Medicaid claims data.J Clin Epidemiol,53,571-578.
  34. 朱育增(2008)。碩士論文(碩士論文)。台北,國立陽明大學衛生福利研究所。
  35. 行政院衛生署(2009)。中華民國96年全民健康保險醫療統計年報。台北:行政院衛生署。
被引用次数
  1. Yang, Ming-Chin,Wei, Shi-Lun(2013).The association of household income, healthcare utilization, and survival of catastrophic illnesses patients: using ESRD and cancer as examples.臺灣公共衛生雜誌,32(4),331-345.
  2. 陳威明、陳正豐、張祺君、吳肖琪(2016)。慢性腎臟病對全髖關節置換術病患預後情形之影響。臺灣公共衛生雜誌,35(1),53-65。
  3. 李曉伶、吳肖琪(2013)。台灣慢性病人醫療利用之探討-以慢性腎臟病、糖尿病及高血壓為例。臺灣公共衛生雜誌,32(3),231-239。
  4. 蘇慧芳、謝碧晴、李中一、吳姿璇(2013)。健保居家照護使用者急診醫療利用。臺灣公共衛生雜誌,32(1),18-30。
  5. 謝慧敏、蔡麗伶、張清雲、張玉蓉、邱姵穎(2016)。風險校正模式於健保論人計酬制度之應用:以高屏家醫群為例。臺灣公共衛生雜誌,35(6),595-608。
  6. 謝珮盈,劉佳美,張桓瑋(2021)。藥師用藥整合服務對病人處方與全人照護服務研究。台灣家庭醫學雜誌,31(4),269-279。
  7. 楊長興、連怡甄(2012)。醫師臨終之醫療資源耗用:醫師病人是否不同?。臺灣公共衛生雜誌,31(3),236-250。
  8. 楊哲銘、楊長興、黃國哲、翁瑄甫、林縈縈(2016)。應用全民健康保險研究資料庫比較不同合併症指標對中風病患的醫療費用之預測表現。臺灣公共衛生雜誌,35(4),430-445。