题名

攝食米食之砷、鎘、鉛、銅暴露健康風險評估-以桃園、彰化、台中稻米樣本為例

并列篇名

Assessment of the health risks of arsenic, cadmium, lead, and copper exposure through rice consumption: using rice samples from Taoyuan, Changhua, and Taichung as examples

DOI

10.6288/TJPH.202004_39(2).108114

作者

黃耀輝(YAW-HUEI HWANG);范致豪(CHIHHAO FAN);顏筠庭(YUN-TING YEN);周宜蓁(YI-CHEN CHOU);賴思齊(SZU-CHI LAI)

关键词

米食 ; 砷 ; 金屬 ; 健康風險評估 ; 致癌風險 ; rice ; arsenic ; metal ; health risk assessment ; carcinogenic risk

期刊名称

台灣公共衛生雜誌

卷期/出版年月

39卷2期(2020 / 04 / 24)

页次

170 - 186

内容语文

繁體中文

中文摘要

目標:本研究利用國內桃園、彰化、台中等地稻米樣本實地資料為例進行健康風險評估,以瞭解攝取米食的潛在重金屬暴露風險等級。方法:本研究在桃園與彰化/台中兩地區分別採集167筆與200筆稻米樣本,以感應耦合電漿質譜儀測定銅、砷、鎘及鉛等金屬含量。再結合蒙地卡羅模擬分析法評估健康風險。結果:研究結果顯示,國人經米食攝取金屬之非致癌風險值最高為砷暴露,0.518(5%,95%百分位:0.166,1.663)。另外,攝取米食之砷暴露致癌風險值中位數為2.33×10^(-4)(7.48×10^(-5),7.48×10^(-4))。再以無機砷為例,若米食中濃度管制標準分別設在0.20、0.15、0.10 μg/g,國人經米食攝取之砷暴露致癌風險值中位數降低幅度分別為4.3%、13.3%與31.8%,健康風險值小於1×10^(-4)的人口比例則分別為12.1%、14.3%、22.7%。結論:利用健康風險評估過程可檢視國人體重、米食攝食量、金屬種類與濃度、致癌或非致癌性風險參考係數等因素對健康風險值的影響程度,推估不同管制標準對改善健康風險的幅度,做為米食安全政策評估的重要參考依據。

英文摘要

Objectives: This study investigated data of rice samples from Taoyuan, Changhua, and Taichung to rank the potential health risks of heavy metal exposure through rice consumption. Methods: In this study, 167 rice samples were collected from the Taoyuan area, and another 200 rice samples were collected from the Taichung and Changhua areas. The copper, arsenic, cadmium, and lead levels were assessed in the rice samples and used for health risk assessment through Monte Carlo simulation. Results: The results indicated that arsenic exposure resulted in the highest non-carcinogenic risk of 0.518 (5th percentile to 95th percentile: 0.166-1.663). The median carcinogenic risks were 2.33 × 10^(-4) (7.48 × 10^(-5), 7.48 × 10^(-4)) for arsenic exposure. If the standards for arsenic content in rice are set at 0.20, 0.15, or 0.10 μg/g, the corresponding median carcinogenic risks for arsenic exposure through rice consumption in Taiwan were reduced by 4.3%, 13.3%, and 31.8%, respectively, and the proportions of the population with a health risk less than 1 × 10^(-4) were 12.1%, 14.3%, and 22.7%, respectively. Conclusions: The extent of the effects of body weight, rice intake, metal type, metal concentration, cancer slope factor, and non-cancer reference dose on the health risk assessment could scrutinized through the health risk assessment processes. The reduction of health risk through the implementation of various rice arsenic standards could also be evaluated and used accordingly as reliable reference for making policy decisions pertaining to rice food safety.

主题分类 醫藥衛生 > 預防保健與衛生學
醫藥衛生 > 社會醫學
参考文献
  1. The Electronic Code of Federal Regulations (e-CFR). Title 40: protection of environment. Part 141: National Primary Drinking Water Regulation. Subpart I: control of lead and copper. Available at: https://www.ecfr.gov/cgi-bin/text-idx?SID=9c5415b2fe8eb76878a169c14454171f&mc=true&node=sp40.25.141.i&rgn=div6#se40.25.141_180. Accessed June 26, 2019.
  2. ATSDR(2011).Toxicological Profile for Cadmium.Atlanta, GA:Division of Toxicology, ATSDR.
  3. Baars, AJ,Theelen, RMC,Janssen, PJCM.RIVM reportRIVM report,未出版
  4. Booth, B(2007).Arsenic in U.S. rice varies by region.Enviro Sci Technol,41,2075-2076.
  5. Booth, B(2008).Arsenic speciation varies with type of rice.Enviro Sci Technol,42,3484-3485.
  6. Cao, H,Chen, J,Zhang, J,Zhang, H,Qiao, L,Men, Y(2010).Heavy metals in rice and garden vegetables and their potential health risks to inhabitants in the vicinity of an industrial zone in Jiangsu, China.J Environ Sci,22,1792-1799.
  7. Chaleshtori, FS,Kopaei, MR,Chaleshtori, RS(2017).A review of heavy metals in rice (Oryza sativa) of Iran.Toxin Reviews,36,147-153.
  8. Chen, HP,Tang, Z,Wang, P,Zhao, FJ(2018).Geographical variations of cadmium and arsenic concentrations and arsenic speciation in Chinese rice.Environ Pollut,238,482-490.
  9. European Food Safety Authority=EFSA(2009).Scientific opinion on arsenic in food.EFSA J,7,1351.
  10. FAO,WHO(2011).Safety Evaluation of Certain Food Additives and Contaminants: WHO Food Additives Series: 64.Geneva, Switzerland:The Joint FAO/WHO Expert Committee on Food Additives=JECFA.
  11. Gunduz, S,Akman, S(2013).Investigation of arsenic and cadmium contents in rice samples in Turkey by electrothermal atomic absorption spectrometry.Food Anal Methods,6,1693-1696.
  12. Hang, XS,Wang, HY,Zhou, JM,Ma, CL,Du, CW,Chen, XQ(2009).Risk assessment of potentially toxic element pollution in soils and rice (Oryza sativa) in a typical area of the Yangtze River Delta.Environ Pollut,157,2542-2549.
  13. Heikens, A(2006).Arsenic Contamination of Irrigation Water, Soil and Crops in Bangladesh: Risk Implications for Sustainable Agriculture and Food Safety in Asia.Bangkok, Thailand:FAO Regional Office for Asia and the Pacific.
  14. Hensawang, S,Chanpiwat, P(2017).Health impact assessment of arsenic and cadmium intake via rice consumption in Bangkok, Thailand.Environ Monit Assess,189,599.
  15. Lee, SG,Lee, YS,Cho, SY(2018).Monitoring of arsenic contents in domestic rice and human risk assessment for daily intake of inorganic arsenic in Korea.J Food Compost Anal,69,25-32.
  16. Liu, JG,Li, KQ,Xu, JK(2003).Lead toxicity, uptake, and translocation in different rice cultivars.Plant Science,165,793-802.
  17. Meharg, AA,Norton, G,Deacon, C(2013).Variation in rice cadmium related to human exposure.Environ Sci Technol,47,5613-5618.
  18. Meharg, AA,Williams, PN,Adomako, E(2009).Geographical variation in total and inorganic arsenic content of polished (white) rice.Enviro Sci Technol,43,1612-1617.
  19. Naito, S,Matsumoto, E,Shindoh, K,Nishimura, T(2015).Effects of polishing, cooking, and storing on total arsenic and arsenic species concentrations in rice cultivated in Japan.Food Chem,168,294-301.
  20. Nriagu, JO(ed.)(2011).Encyclopedia of Environmental Health.Burlington, MA:Elsevier Science.
  21. OEHHA. Technical support document for cancer potency factors 2009. Appendix B. Chemical-specific summaries of the information used to derive unit risk and cancer potency values. Available at: https://oehha.ca.gov/air/crnr/technical-support-document-cancer-potency-factors-2009. Accessed June 25, 2019.
  22. Omar, NA,Praveena, SM,Aris, AZ,Hashim, Z(2015).Health risk assessment using in vitro digestion model in assessing bioavailability of heavy metal in rice: a preliminary study.Food Chem,188,46-50.
  23. Qian, YZ,Chen, C,Zhang, Q,Li, Y,Chen, ZJ,Li, M(2010).Concentrations of cadmium, lead, mercury and arsenic in Chinese market milled rice and associated population health risk.Food Control,21,1757-1763.
  24. Rahman, MA,Rahman, MM,Reichman, SM,Lim, RP,Naidu, R(2014).Heavy metals in Australian grown and imported rice and vegetables on sale in Australia: health hazard.Ecotoxicol Environ Saf,100,53-60.
  25. Sharma, S,Kaur, I,Nagpal, AK(2017).Assessment of arsenic content in soil, rice grains and groundwater and associated health risks in human population from Ropar wetland, India, and its vicinity.Environ Sci Pollut Res Int,24,18836-18848.
  26. Smith, NM,Lee, R,Heitkemper, DT,DeNicola Cafferky, K,Haque, A,Henderson, AK(2006).Inorganic arsenic in cooked rice and vegetables from Bangladeshi households.Sci Total Environ,370,294-301.
  27. The Agency for Toxic Substances and Disease Registry=ATSDR(2007).Toxicological Profile for Arsenic.Atlanta, GA:Division of Toxicology.
  28. The Codex Alimentarius Commission=CAC(2015).Codex Alimentarius Commision: Procedural Manual.Rome, Italy:Food and Agriculture Organization of the United Nation.
  29. The Office of Environmental Health Hazard Assessment (OEHHA). Lead and lead compounds. Available at: https://oehha.ca.gov/chemicals/lead-and-lead-compounds. Accessed June 25, 2019.
  30. Torres-Escribano, S,Leal, M,Velez, D,Montoro, R(2008).Total and inorganic arsenic concentrations in rice sold in Spain, effect of cooking, and risk assessments.Environ Sci Technol,42,3867-3872.
  31. U.S. Food and Drug Administration (USFDA). Arsenic in rice and rice products risk assessment report. Available at: http://www.fda.gov/Food/FoodScienceResearch/RiskSafetyAssessment/default.htm. Accessed June 25, 2019.
  32. United States Environmental Protection Agency=USEPA(1991).United States Environmental Protection Agency (USEPA). Arsenic, Inorganic (CASRN 7440-38-2): Carcinogenicity Assessment for Lifetime Exposure. Washington, DC: US Environmental Protection Agency, 1991..
  33. USEPA. Guidelines for developmental toxicity risk assessment. Fed Reg 1991:56:63798-826.
  34. USEPA. Chemical assessment summary: lead and compounds (inorganic) (CASRN 7439-92-1). Available at:https://cfpub.epa.gov/ncea/iris/iris_documents/documents/subst/0277_summary.pdf. Accessed June 25, 2019.
  35. USEPA. Cadmium (CASRN 7440-43-9). Available at: https://cfpub.epa.gov/ncea/iris2/chemicalLanding.cfm?substance_nmbr=141. Accessed June 25, 2019.
  36. USEPA. Regional screening levels (RSLs) - generic tables (summary table). Available at: https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables. Accessed June 25, 2019.
  37. USEPA. Guiding principles for Monte Carlo analysis (EPA/630/R-97/001). Available at: https://www.epa.gov/risk/guiding-principles-monte-carlo-analysis. Accessed June 25, 2019.
  38. Xu, JK,Yang, LX,Wang, ZQ,Dong, GC,Huang, JN,Wang, YL(2006).Toxicity of copper on rice growth and accumulation of copper in rice grain in copper contaminated soil.Chemosphere,62,602-607.
  39. Zavala, YJ,Duxbury, JM(2008).Arsenic in rice: I. estimating normal levels of total arsenic in rice grain.Environ Sci Technol,42,3856-3860.
  40. Zhu, YG,Williams, PN,Meharg, AA(2008).Exposure to inorganic arsenic from rice: a global health issue?.Environ Pollut,154,169-171.
  41. 王炯文, CW,翁慧婷, HT,傅淑英, SY(2015)。102年度及103年度食米中重金屬(鎘、汞、鉛)含量調查。食品藥物研究年報,6,59-66。
  42. 行政院環境保護署:健康風險評估技術規範。台北:行政院環境保護署,2011。Environmental Protection Administration, Executive Yuan, R.O.C. (Taiwan). Environmental Health Risk Assessment Technical Regulations. Taipei: Environmental Protection Administration, Executive Yuan, R.O.C. (Taiwan), 2011. [In Chinese]
  43. 國家食品藥品監督管理總局:食品安全國家標準食品中污染物限量。北京:中華人民共和國國家食品藥品監督管理總局,2017。State Food and Drug Administration (SFDA). National Food Safety Standard Contamination Limit in Food. Beijing, China: SFDA, 2017. [In Chinese]
  44. 張尊國:台灣水田重金屬污染潛勢分析。https:// doie.coa.gov.tw。引用2019/06/25。 Chang TK. Analysis of heavy metal pollution potential of paddy field in Taiwan. Available at: https://www.ecfr.gov/cgi-bin/text-idx?SID=9c5415b2fe8eb76878a169c14454171f&mc=true&node=sp40.25.141.i&rgn=div6#se40.25.141_180. Accessed June 25, 2019. [In Chinese]
  45. 許哲綸, CL,高雅敏, YM,許惠美, HM(2010)。食米中重金屬(鎘、汞、鉛)含量調查。食品藥物研究年報,1,12-22。
  46. 衛生福利部食品藥物管理署:國家攝食資料庫—108年度Consumer-only食物品項攝食量計算結果(19-65歲所有受訪者)。http://tnfcds.cmu.edu.tw/index.php?action=download&cid=2&p=4。引用2019/12/25。Food and Drug Administration, Ministry of Health and Welfare, R.O.C. (Taiwan). National Food Consumption Database: 2019 consumer-only calculation food intake of food consumption items (all respondents aged 19-65). Available at: http://tnfcds.cmu.edu.tw/index.php?action=download&cid=2&p=4. Accessed December 25, 2019. [In Chinese]
  47. 衛生福利部食品藥物管理署:重金屬檢驗方法總則-感應耦合電漿質譜法。https://www.fda.gov.tw/tc/includes/GetFile.ashx?id=f636694268974360569。引用2019/06/25。Food and Drug Administration, Ministry of Health and Welfare, R.O.C. (Taiwan). General Method of Test for Heavy Metals: inductively coupled plasma mass spectrometry (ICP-MS). Available at: https://www.fda.gov.tw/tc/includes/GetFile.ashx?id=f636694268974360569. Accessed June 25, 2019. [In Chinese]
  48. 衛生福利部食品藥物管理署:食品中污染物質及毒素衛生標準。台北:衛生福利部食品藥物管理署,2018。Food and Drug Administration, Ministry of Health and Welfare, R.O.C. (Taiwan). Sanitation Standard for Contaminants and Toxins in Food. Taipei: Food and Drug Administration, Ministry of Health and Welfare, R.O.C. (Taiwan), 2018.