题名

比較靜態與動態人口資料應用於新冠肺炎熱區之預測能力

并列篇名

Comparing the performance between static and dynamic populations in COVID-19 hotspot prediction

DOI

10.6288/TJPH.202212_41(6).111074

作者

周敬棋(Ching-Chi Chou);林先和(Hsien-Ho Lin);陳正誠(Kevin J. Chen);陳潤秋(Ran-Chou Chen);詹大千(Ta-Chien Chan)

关键词

新冠肺炎 ; 手機信令 ; 人流 ; 預警模式 ; COVID-19 ; mobile phone signal ; human mobility ; early warning

期刊名称

台灣公共衛生雜誌

卷期/出版年月

41卷6期(2022 / 12 / 27)

页次

611 - 626

内容语文

繁體中文;英文

中文摘要

目標:本研究探討運用戶籍人口資料與電信人流資料進行臺北市、新北市新冠肺炎熱區預警的建構,比較其預測準確度與應用上的限制,期提供未來疫情防治參考。方法:研究的時空範圍為2021年5月之雙北市村里,分別使用靜態、動態兩種資料建構人流網絡。前者以重力模型模擬人流,後者以電信數據測量人流變化,透過網絡空間的結構等位特性估計人流足跡相似度,進而計算村里感染風險,並以ROC曲線、羅吉斯迴歸檢驗在不同確診門檻值下的模型表現。結果:在研究區間內,電信人流之平均曲線下面積較高(AUC為0.75,重力模型之AUC為0.69),且傾向預測距離疫情爆發中心較遠的村里,適合用於預測空間上的傳染趨勢。羅吉斯迴歸的結果也顯示,使用電信人流資料所計算的未來一周確診人數是否高於門檻值的平均風險之勝算比為1.45;重力模型之平均勝算比為1.10。結論:在評估地區的感染風險時,除了參考疫情調查與累積病例數外,人流網絡的資訊可以協助辨識潛在的高風險區域並進行及早預警。

英文摘要

Objectives: This study aimed to set up the prediction model of COVID-19 hotspot areas by using the census data and human mobility from telecommunication data in Taipei and New Taipei City. The comparison between their accuracy and limitations can provide the relevant insights for future epidemic control. Methods: The spatio-temporal resolution is fixed at the village level in two cities in May 2021. The static and dynamic data are used to construct the mobility network. The former applies gravity model to mimic human flow, and the latter uses telecommunication data as the measure of mobility. We propose the footprints similarity by structural equivalence of spatial networks and integrate it with the number of confirmed cases for computing the risk level of the villages. The performance of the models is evaluated using ROC curves and logistic regression under different thresholds for the confirmed cases. Results: The mobility derived from the telecommunication data provided better prediction performance than that from the census data; they have an average AUC of 0.75 and 0.69, respectively. Besides, the telecommunication data had a tendency to identify a further village as high-risk zone compared to the gravity model. According to the results of logistic regression, the odds ratio (OR) of exceeding the cases' threshold estimated from the telecommunication data is 1.45 on average, while the one estimated from the census data is 1.10. Conclusions: Telecommunication data can be beneficial in identifying the potential high-risk areas and enhancing situational awareness in advance.

主题分类 醫藥衛生 > 預防保健與衛生學
醫藥衛生 > 社會醫學
参考文献
  1. 廖培珊, PS,蕭錦炎, CY,楊雅惠, YH(2018)。以大型抽樣調查評估戶籍人口與常住人口之可能差異。人口學刊,57,1-39。
    連結:
  2. Barbosa, H,Barthelemy, M,Ghoshal, G(2018).Human mobility: models and applications.Phys Rep,734,1-74.
  3. Barthélemy, M(2011).Spatial networks.Phys Rep,499,1-101.
  4. Chan, TC,Chou, CC,Chu, YC(2022).Effectiveness of controlling COVID-19 epidemic by implementing soft lockdown policy and extensive community screening in Taiwan.Sci Rep,12,12053.
  5. He, X,Lau, EH,Wu, P(2020).Temporal dynamics in viral shedding and transmissibility of COVID-19.Nat Med,26,672-675.
  6. Jung, WS,Wang, F,Stanley, HE(2008).Gravity model in the Korean highway.Europhys Lett,81,48005.
  7. Kraemer, MU,Yang, CH,Gutierrez, B(2020).The effect of human mobility and control measures on the COVID-19 epidemic in China.Science,368,493-497.
  8. Krings, G,Calabrese, F,Ratti, C,Blondel, VD(2009).Urban gravity: a model for inter-city telecommunication flows.J Stat Mech Theor Exp,2009,L07003.
  9. Lauer, SA,Grantz, KH,Bi, Q(2020).The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: estimation and application.Ann Intern Med,172,577-582.
  10. Ng, TC,Cheng, HY,Chang, HH(2021).Comparison of estimated effectiveness of case-based and population-based interventions on COVID-19 containment in Taiwan.JAMA Intern Med,181,913-921.
  11. Nova, N,Athni, TS,Childs, ML,Mandle, L,Mordecai, EA(2021).Global change and emerging infectious diseases.Annu Rev Resour Economics,14,333-354.
  12. Parvin, F,Ali, SA,Hashmi, S,Ahmad, A(2021).Spatial prediction and mapping of the COVID-19 hotspot in India using geostatistical technique.Spatial Inform Res,29,479-494.
  13. Persson, J,Parie, JF,Feuerriegel, S(2021).Monitoring the COVID-19 epidemic with nationwide telecommunication data.Proc Natl Acad Sci,118,e2100664118.
  14. Schlosser, F,Maier, BF,Jack, O,Hinrichs, D,Zachariae, A,Brockmann, D(2020).COVID-19 lockdown induces disease-mitigating structural changes in mobility networks.Proc Natl Acad Sci,117,32883-32890.
  15. Simini, F,González, MC,Maritan, A,Barabási, AL(2012).A universal model for mobility and migration patterns.Nature,484,96-100.
  16. Vigfusson, Y,Karlsson, TA,Onken, D(2021).Cell-phone traces reveal infection-associated behavioral change.Proc Natl Acad Sci,118,e2005241118.
  17. Wesolowski, A,Qureshi, T,Boni, MF(2015).Impact of human mobility on the emergence of dengue epidemics in Pakistan.Proc Natl Acad Sci,112,11887-11892.
  18. Yen, MY,Yen, YF,Chen, SY(2021).Learning from the past: Taiwan’s responses to COVID-19 versus SARS.Int J Infect Dis,110,469-478.
  19. Zheng, Z,Xie, Z,Qin, Y,Wang, K,Yu, Y,Fu, P(2021).Exploring the influence of human mobility factors and spread prediction on early COVID-19 in the USA.BMC Public Health,21,615.
  20. 柯貞妤, JY,徐士敏, SM,洪敏南, MN(2022)。2021年台灣首起新冠肺炎Delta變異株社區群聚感染調查。疫情報導,38,75-80。
被引用次数
  1. 藍之辰,鄭皓元,蔡懿晨,劉宇倫,詹大千,溫在弘,傅涵,陳為堅,郭飛鷹,張寧,張筱涵,林柏丞,林雨宣,林征發,林先和,周玫芳,李維森,伍倢瑩(2023)。人潮流動資料於傳染病防治決策之應用:以新冠肺炎為例。台灣公共衛生雜誌,42(2),148-152。