题名

全人工膝關節置換術病人術前共病分群與術後感染之關聯

并列篇名

Association between preoperative comorbidity clusters and surgical site infection after total knee arthroplasty

DOI

10.6288/TJPH.202310_42(5).112072

作者

許繼澤(Ji-Ze Syu);溫淑惠(Shu-Hui Wen)

关键词

共病分群 ; 潛在類別分析 ; 術後感染 ; 全人工膝關節置換術 ; 英國生物資料庫 ; clusters of comorbidities ; latent class analysis ; postoperative infection ; total knee arthroplasty ; UK biobank

期刊名称

台灣公共衛生雜誌

卷期/出版年月

42卷5期(2023 / 10 / 30)

页次

542 - 553

内容语文

繁體中文;英文

中文摘要

目標:本研究旨在探討全人工膝關節置換術(total knee arthroplasty,簡稱TKA)病人術前共病分群與術後感染之關聯。方法:採回溯性世代研究並以英國生物資料庫住院檔(採計1980到2020年)判定初次TKA患者(n=20,112),追蹤結果變項術後感染直至2021年止;術前共病以術前所有醫療紀錄之疾病診斷碼定義。以潛在類別分析(latent class analysis,簡稱LCA)法進行共病分群,並用Cox比例風險迴歸模式評估TKA患者之共病分群的短期與長期術後感染之風險。結果:LCA分群最合適的結果為四群,分別命名為低共病(n=10,573, 52.6%)、三高及心血管疾病(n=4,597, 22.9%)、皮膚及感染性疾病(n=3,390, 16.8%)及多共病群(n=1,552,7.7%)。與低共病群相比,皮膚及感染性疾病群短期術後感染風險較高(風險比(hazard ratio, HR)=1.86, 95%信賴區間(confidence interval, CI: 1.14-3.05);至於長期術後感染風險,皮膚及感染性疾病群(HR=2.25, 95% CI: 1.52-3.35)、三高及心血管疾病群(HR=1.90, 95%CI: 1.25-2.89)與多共病群(HR=2.78, 95% CI: 1.52-5.08)皆比低共病群高。結論:TKA病人術前共病可分成四大分群且與低共病群相比,其他三群都具有長期術後感染風險,其中皮膚及感染性疾病群也有較高的短期術後感染風險,研究發現有助臨床醫師辨別術後感染較高風險病人。

英文摘要

Objectives: This study was conducted to investigate the association between preoperative comorbidity clusters and surgical site infection after total knee arthroplasty (TKA). Methods: This retrospective cohort study was conducted using the data (from the UK Biobank database) of 20,112 adults who had undergone primary TKA between 1980 and 2020. The primary outcome was postoperative infection. The patients were followed up until the end of 2021. Information on the patients’ preoperative comorbidities was obtained from their pre-TKA medical records. A latent class analysis was performed to cluster patients with TKA according to preoperative comorbidities. A Cox proportional-hazards model was used to estimate the risks of short- and long-term postoperative infection in patients with different comorbidity clusters. Results: The latent class analysis revealed four comorbidity clusters: low comorbidity (10,573 patients [52.6%]); hypertension, hyperglycemia, hyperlipidemia, and cardiovascular disease (4,597 [22.9%]); skin and infectious diseases (3,390 [16.8%]), and multiple comorbidities (1,552 [7.7%]). The risk of short-term postoperative infection was higher in the skin and infectious diseases cluster than that in the low-comorbidity cluster (hazard ratio [HR]: 1.86; 95% confidence interval [CI]: 1.14-3.05). The risk of long-term postoperative infection was elevated in the skin and infectious diseases cluster (HR: 2.25; 95% CI: 1.52-3.35); hypertension, hyperglycemia, hyperlipidemia, and cardiovascular disease cluster (HR: 1.90; 95% CI: 1.25-2.89); and multiple comorbidities cluster (HR: 2.78; 95% CI: 1.52-5.08). Conclusions: We identified four comorbidity clusters in patients who underwent TKA. Compared with the low-comorbidity cluster, the other three clusters had increased risks of long-term postoperative infection; the skin and infectious diseases cluster also had an elevated risk of short-term postoperative infection. Our findings can help clinicians identify patients at an elevated risk of post-TKA infection.

主题分类 醫藥衛生 > 預防保健與衛生學
醫藥衛生 > 社會醫學
参考文献
  1. Aflaki, K,Vigod, S,Ray, JG(2022).Part I: a friendly introduction to latent class analysis.J Clin Epidemiol,147,168-170.
  2. Arias-de la Torre, J,Smith, K,Dregan, A(2020).Impact of comorbidity on the short- and medium-term risk of revision in total hip and knee arthroplasty.BMC Musculoskelet Disord,21,447.
  3. Carter, AR,Gill, D,Davey Smith, G,Taylor AE,Davies, NM,Howe, LD(2022).Cross-sectional analysis of educational inequalities in primary prevention statin use in UK Biobank.Heart,108,536-542.
  4. Chudasama, YV,Khunti, K,Davies, MJ(2021).Clustering of comorbidities.Future Healthc,8,e224-e229.
  5. Dekker, FW,de Mutsert, R,van Dijk, PC,Zoccali, C,Jager, KJ(2008).Survival analysis: time-dependent effects and time-varying risk factors.Kidney Int,74,994-997.
  6. Denaxas, S,Liu, G,Feng, Q(2022).Mapping the Read2/CTV3 controlled clinical terminologies to Phecodes in UK Biobank primary care electronic health records: implementation and evaluation.AMIA Annu Symp Proc,2021,362-371.
  7. Denny, JC,Ritchie, MD,Basford, MA(2010).PheWAS: demonstrating the feasibility of a phenome-wide scan to discover gene–disease associations.Bioinformatics,26,1205-1210.
  8. Elfving, P,Marjoniemi, O,Niinisalo, H(2016).Estimating the incidence of connective tissue diseases and vasculitides in a defined population in Northern Savo area in 2010.Rheumatol Int,36,917-924.
  9. Ferguson, RJ,Palmer, AJ,Taylor, A,Porter, ML,Malchau, H,Glyn-Jones, S(2018).Hip replacement.Lancet,3,1662-1671.
  10. Gonzalez-Uribe, V,Vidaurri-de la Cruz, H,Gomez-Nuñez, A,Leyva-Calderon, JA,Mojica-Gonzalez, ZS(2023).Comorbidities & burden of disease in atopic dermatitis.Asian Pac J Allergy Immunol,41,97-105.
  11. Hung, TY,Liu, KL,Wen, SH(2022).Using the phecode system to identify the preoperative clinical phenotypes associated with surgical site infection in patients undergoing primary total knee arthroplasty: the sex differences.J Clin Med,11,5784.
  12. Kapadia, BH,Berg, RA,Daley, JA,Fritz, J,Bhave, A,Mont, MA(2016).Periprosthetic joint infection.Lancet,387,386-394.
  13. Kong, L,Cao, J,Zhang, Y,Ding, W,Shen, Y(2017).Risk factors for periprosthetic joint infection following primary total hip or knee arthroplasty: a meta-analysis.Int Wound J,14,529-536.
  14. Lenguerrand, E,Whitehouse, MR,Beswick, AD(2019).Risk factors associated with revision for prosthetic joint infection following knee replacement: an observational cohort study from England and Wales.Lancet Infect Dis,19,589-600.
  15. Lin, FH,Chen, HC,Lin, C(2018).The increase in total knee replacement surgery in Taiwan: a 15-year retrospective study.Medicine,97,e11749.
  16. Linzer, DA,Lewis, JB(2011).poLCA: an R package for polytomous variable latent class analysis.J Stat Software,42,1-29.
  17. Owens PL, Heslin KC, Fingar KR, Weiss AJ. Cooccurrence of physical health conditions and mental health and substance use conditions among adult inpatient stays 2010 versus 2014. HCUP Statistical Brief #240. Availabla at: http://www.hcup-us.ahrq.
  18. Pflüger, MJ,Frömel, DE,Meurer, A(2021).Total hip arthroplasty revision surgery: impact of morbidity on perioperative outcomes.J Arthroplasty,36,676-681.
  19. Pineda-Moncusí, M,Dernie, F,Dell'Isola, A(2023).Classification of patients with osteoarthritis through clusters of comorbidities using 633,330 individuals from Spain.Rheumatology
  20. Price, AJ,Alvand, A,Troelsen, A(2018).Kneereplacement.Lancet,392,1672-1682.
  21. Puhto, T,Puhto, AP,Vielma, M,Syrjälä, H(2019).Infection triples the cost of a primary joint arthroplasty.Infect Dis,51,348-355.
  22. Ren, W,Rajendran, R,Zhao, Y(2018).Amino acids as mediators of metabolic cross talk between host and pathogen.Front Immunol,9,319.
  23. Resende, VAC,Neto, AC,Nunes, C,Andrade, R,Espregueira-Mendes, J,Lopes, S(2021).Higher age, female gender, osteoarthritis and blood transfusion protect against periprosthetic joint infection in total hip or knee arthroplasties: a systematic review and meta analysis.Knee Surg Sports Traumatol Arthrosc,29,8-43.
  24. Sloan, M,Premkumar, A,Sheth, NP(2018).Projected volume of primary total joint arthroplasty in the US, 2014 to 2030.J Bone Joint Surg Am,100,1455-1460.
  25. Swain, S,Coupland, C,Strauss, V(2022).Clustering of comorbidities and associated outcomes in people with osteoarthritis - A UK Clinical Practice Research Datalink study.Osteoarthritis Cartilage,30,702-713.
  26. Turkiewicz, A,Petersson, IF,Björk, J(2014).Current and future impact of osteoarthritis on health care: a population-based study with projections to year 2032.Osteoarthritis Cartilage,22,1826-1832.
  27. Weller, BE,Bowen, NK,Faubert, SJ(2020).Latent class analysis: a guide to best practice.J Black Psychol,46,287-311.
  28. Wu, P,Gifford, A,Meng, X(2019).Mapping ICD-10 and ICD-10-CM codes to Phecodes: workflow development and Initial evaluation.JMIR Med Inform,7,e14325.
  29. Yeom, HA,Fleury, J,Keller, C(2008).Risk factors for mo bility limitatio n in co mmun ity-d w ellin g older adults: a social ecological perspective.Geriatr Nurs,29,133-140.
  30. Zekavat, SM,Lin, SH,Bick, AG(2021).Hematopoietic mosaic chromosomal alterations increase the risk for diverse types of infection.Nat Med,27,1012-1024.
  31. Zemedikun, DT,Lee, H,Nirantharakumar, K(2022).Comorbidity phenotypes and risk of mortality in patients with osteoarthritis in the UK: a latent class analysis.Arthritis Res Ther,24,231.
  32. 柯絲珊, SS(2018)。花蓮=Hualien,慈濟大學公共衛生學系碩士班=Department of Public Health, Tzu Chi University。
  33. 洪庭郁, TY(2021)。花蓮=Hualien,慈濟大學公共衛生學系碩士班=Department of Public Health, Tzu Chi University。
  34. 翁易萱, YS(2022)。花蓮=Hualien,慈濟大學公共衛生學系碩士班=Department of Public Health, Tzu Chi University。
  35. 葉俞均,YJ(2014)。花蓮=Hualien,慈濟大學公共衛生學系=Department of Public Health, Tzu Chi University。
  36. 劉冠麟, KL(2017)。花蓮=Hualien,慈濟大學醫學科學研究所=Institute of Medical Sciences, Tzu Chi University。