题名

應用ICA與DEA方法評估半導體產業封測領域公司經營績效-以台灣中型半導體封測廠為例

并列篇名

Applying Independent Component Analysis and DEA to Measure Efficiencies of the Medium-size Semiconductor Packaging and Testing Companies in Taiwan

DOI

10.6160/2016.09.03

作者

呂正欽(Cheng-Chin Lu);高淩菁(Ling-Jing Kao);傅新彬(Hsin-Pin Fu)

关键词

半導體產業 ; 經營績效 ; 績效評估 ; 獨立成份分析 ; 資料包絡法 ; Semiconductor Industry ; Business Performance ; Efficiency Evaluation ; Independent Component Analysis ; Data Envelopment Analysis

期刊名称

中山管理評論

卷期/出版年月

24卷3期(2016 / 09 / 01)

页次

503 - 530

内容语文

繁體中文

中文摘要

台灣半導體產業在國家經濟發展過程中,扮演著極重要角色,如何有效運用有限資源達到最大的效率,已成為各家廠商極力追求的目標。本文旨在以半導體產業中型封測領域廠商為例,運用獨立成份分析法(independent component analysis, ICA)與資料包絡分析法(data envelopment analysis, DEA),探討其在2007 至2010 年間之經營效率。為了驗證所提方法的有效性,我們除了使用蒙地卡羅模擬法進行模擬分析外,也使用傳統的DEA技術進行比較。此外,我們也針對台灣半導體產業上市櫃封測領域廠商在2007年至2010年的財務相關資料進行實證研究,更以麥氏生產力指數探討封測領域廠商在2007年至2010年間生產力及跨期效率的平均變動情形,希望能藉此瞭解各廠商在各年度效率與生產力的成長及衰退。本文主要貢獻:(1)利用模擬方式驗證ICA方法可以有效解決DEA模式中變項資料間存在高度相關性的問題;(2)根據實際之台灣半導體產業上市櫃公司財務資料,有效分析出各公司的專業技術能力與生產效率,藉以協助效率較低的企業找出應調整之投入量。實證結果發現,部分廠商無效率的主要原因為技術效率的退步及規模報酬遞減,這樣的結果顯示廠商在經營上應更注意市場的實際情況與企業內部資源的配適性。

英文摘要

In the development of Taiwan's economy, the semiconductor industry plays a very important role. To keep the competitive advantage, almost all the semiconductor companies are dedicating in efficiency improvement. That is, how to achieve maximum efficiency based on limited resources has become their primary target. In this study, the dataset provided by several medium-size semiconductor packaging and testing companies in Taiwan is used for analysis. In additions, two approaches, independent component analysis (ICA) and data envelopment analysis (DEA) are proposed to evaluate the efficiency of each Decision Making Unit (DMU) from 2007 to 2010. To demonstrate the performance of the proposed method, we are not only comparing the discrimination capability of ICA-DEA with traditional DEA approach but also applying Malmquist productivity index (MPI) to investigate the productivity change over time. This study contributes to the DEA literature and the semiconductor industry in two aspects. First, independent component analysis (ICA) can be applied to eliminate multicollinearity between explanatory variables in DEA model. Second, this study provides the practical contribution that the selected medium-size semiconductor packaging and testing companies will have their optimal input and output resources setups so that they can enhance their competitive advantage. The result shows that the causes of inefficiency for some companies are the reduction of their technical efficiencies and the decreasing of their returns to scale, which means that their resource allocation problems should be considered more carefully.

主题分类 社會科學 > 管理學
参考文献
  1. Huang, M. Y.,Huang, S. Y.(2010).Productivity evaluation of Taiwanese semiconductor companies using a three-stage Malmquist DEA approach.Journal of Applied Economics,Special Issue,31-57.
    連結:
  2. Silva, E. and Lansink, O. A., 2013, “Dynamic efficiency measurement: a directional distance function approach.” Unpublished Manuscript, Wageningen University..
  3. Adler, N.,Yazhemsky, E.(2010).Improving discrimination in data envelopment analysis: PCA-DEA or variable reduction.European Journal of Operational Research,202(1),273-284.
  4. Andersen, P.,Petersen, N. C.(1993).A procedure for ranking efficient units in data envelopment analysis.Management Science,39(10),1261-1264.
  5. Banker, R. D.,Charnes, R. F.,Cooper, W. W.(1984).Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis.Management Science,39(9),1078-1092.
  6. Bartlett, M. S.,Movellan, J. R.,Sejnowski, T. J.(2002).Face recognition by independent component analysis.IEEE Transactions Neural Networks,13(6),1450-1464.
  7. Beasley, J. E.(1990).Comparing university departments.Omega International Journal of Management Science,18(2),171-183.
  8. Beckmann, C. F.(2012).Modeling with independent components.Neuroimage,62(2),891-901.
  9. Beckmann, C. F.,Smith, S. M.(2004).Probabilistic Independent Component Analysis for Functional Magnetic Resonance Imaging.IEEE Transactions on Medical Imaging,24(2),137-152.
  10. Carbone, T. A.,Semicond, F.(2000).Measuring efficiency of semiconductor manufacturing operations using data envelopment analysis.IEEE 2000 Advanced Semiconductor Manufacturing Conference and Workshop,Boston, USA:
  11. Charnes, A.,Cooper, W. W.(1962).Programming with linear fractional functions.Naval Research Logistics Quarterly,9(3-4),181-186.
  12. Charnes, A.,Cooper, W. W.,Rhodes, E.(1978).Measuring the efficiency of decision making units.European Journal of Operational Research,2(6),429-444.
  13. Chen, W. C.,Chien, C. F.,Chou, M. H.(2008).Economic efficiency analysis of wafer fabrication facilities.Proceedings of the 2009 Winter Simulation Conference,Miami, USA:
  14. Chueh, H. E.,Jheng, J. Y.(2012).Applying data envelopment analysis to evaluation of Taiwanese solar cell industry operational performance.International Journal of Computer Science & Information Technology,4(4),1-8.
  15. Cichocki, A.,Amari, S.(2002).Adaptive Blind Signal and Image Processing: Learning Algorithms and Applications.New York:John Wiley & Sons, Inc.
  16. Comon, P.(1994).Independent component analysis: a new concept?.Signal Processing,36(3),287-314.
  17. Cover, T. M.,Thomas, J. A.(1991).Elements of Information Theory.New York:John Wiley & Sons, Inc.
  18. David, V.,Sanchez, A.(2002).Frontiers of research in BSS/ICA.Neruocomputing,49(1-4),7-23.
  19. Déniz, O.,Castrillón, M.,Hernández, M.(2003).Face recognition using independent component analysis and support vector machines.Pattern Recognition Letters,24(13),2153-2157.
  20. Dulá, J. H.,Hickman, B. L.(1997).Effects of excluding the column being scored from the DEA envelopment LP technology matrix.Journal of the Operational Research Society,48(10),1001-1012.
  21. Dyson, R. G.,Thanassoulis, E.(1988).Reducing weight flexibility in data envelopment analysis.Journal of the Operational Research Society,39(6),563-576.
  22. Eloyan, A.,Ghosh, S. K.(2013).A semi-parametric approach to source separation using independent component analysis.Computational Statistics & Data Analysis,58(1),383-396.
  23. Farrar, D. E.,Glauber, R. R.(1967).Multicollinearity in regression analysis: the problem revisited.Review of Economics and Statistics,49(1),92-107.
  24. Farrell, M. J.(1957).The measurement of productive efficiency.Journal of the Royal Statistical Society,120(3),253-281.
  25. Fried, H. O.,Lovell, C. A. K.,Schmidt, S. S.,Yaisawarng, S.(2002).Accounting for environmental effects and statistical noise in data envelopment analysis.Journal of Productivity Analysis,17(1-2),157-174.
  26. Fried, H. O.,Schmidt, S. S.,Yaisawarng, S.(1999).Incorporating the operating environment into a nonparametric measure of technical efficiency.Journal of Productivity Analysis,12(32),49-267.
  27. Guo, Y.(2011).A general probabilistic model for group independent component analysis and its estimation methods.Biometrics,67(4),1532-1542.
  28. Hyvärinen, A.(1999).Fast and robust fixed-point algorithms for independent component analysis.IEEE Transactions on Neural Networks,10(3),626-634.
  29. Hyvärinen, A.,Karhunen, J.,Oja, E.(2001).Independent Component Analysis.New York:John Wiley & Sons, Inc.
  30. Hyvärinen, A.,Oja, E.(2000).Independent component analysis: Algorithms and applications.Neural Networks,13(4),411-430.
  31. Kurowicka, D.,Cooke, R. M.(2006).Uncertainty Analysis and High Dimensional Dependence Modeling.New York:John Wiley & Sons, Inc.
  32. Leach, R. C.,Hodges, D. A.(1996).Benchmarking semiconductor manufacturing.IEEE Transactions on Semiconductor Manufacturing,9(2),158-169.
  33. Lee, T. W.(1998).Independent Component Analysis: Theory and Application.Boston:Kluwer Academic Publishers.
  34. Liu, W. F.,Wang, P. H.(2008).DEA Malmquist productivity measure: Taiwanese semiconductor companies.International Journal of Production Economics,112(1),367-379.
  35. Roll, Y. W.,Golany, B.(1991).Controlling factor weights in DEA.IIE Transactions,23(1),2-9.
  36. Shen, C. W.,Cheng, M. J.,Chi, M. C.(2009).Measurement of Production Efficiency in Semiconductor Assembly House: Approach of Data Envelopment Analysis.Engineering the Computer Science and IT,New Delhi, IN:
  37. Silva, E.,Stefanou, S.(2003).Nonparametric Dynamic Production Analysis and the Theory of Cost.Journal of Productivity Analysis,19(2),5-32.
  38. Silvey, S. D.(1969).Multicollinearity and imprecise estimation.Journal of the Royal Statistical Society,31(3),539-552.
  39. Thrall, R. M.(1996).Duality, classification and slacks in DEA.The Annals of Operations Research,66(1),109-138.
  40. Tone, K.(2001).A slacks-based measure of efficiency in data envelopment analysis.European Journal of Operational Research,130(3),498-509.
  41. Tone, K.(2002).A slacks-based measure of super-efficiency in data envelopment analysis.European Journal of Operational Research,143(1),32-41.
  42. Vigario, R.,Sarela, J.,Jousmaki, V.,Hamalainen, M.,Oja, E.(2000).Independent component approach to the analysis of EEG and MEG recordings.IEEE Transactions on Biomedical Engineering,47(5),589-593.
  43. Weber, C.(2004).Yield learning and the sources of profitability in semiconductor manufacturing and process development.IEEE Transactions on Semiconductor Manufacturing,17(4),590-596.
  44. Wena, H. C.,Huanga, J. H.,Cheng, Y. L.(2012).What Japanese semiconductor enterprises can learn from the asset-light business model for sustainable competitive advantage.Asian Business & Management,11(5),615-649.
  45. Zhu, J.(2001).Super-efficiency and DEA sensitivity analysis.European Journal of Operational Research,129(2),443-455.
  46. 李明德(2008)。逢甲大學工業工程與系統管理學研究所=Feng-Chia University。
  47. 陳玲君(2012)。2012 半導體工業年鑑。新竹=Hsinchu, TW:工業技術研究院產業經濟與趨勢研究中心=Industrial Economics and Knowledge Center, Industrial Technology Research Institute of Taiwan。
被引用次数
  1. 謝森賢,郭國誠(2021)。運用網路資料包絡分析法探究半導體公司之競爭力。多國籍企業管理評論,15(2),109-126。