题名

VIBRATION OF A RECTANGULAR PLATE DUE TO MOVING LOADS BY USING MOVING FOUR-DEGREE-OF- FREEDOM SPRING-DAMPER-MASS ELEMENT

并列篇名

使用移動四自由度的彈簧-阻尼-質量元素來進行承受移動負荷之長方形板的振動分析

作者

吳佳璋(J.-J. Wu);江振源(C.-Y. Chiang)

关键词

Moving Load ; Rectangular Plate ; Moving Spring-Damper-Mass Element ; Shape Function ; 移動負荷 ; 長方形板 ; 移動彈簧-阻尼-質量元素 ; 形狀函數

期刊名称

中國造船暨輪機工程學刊

卷期/出版年月

37卷3期(2018 / 08 / 01)

页次

137 - 150

内容语文

英文

中文摘要

To take the pitching, inertia, spring and damping effects of moving load into account, the moving four-degree-of-freedom spring-damper-mass element, which consists of a lumped mass m_(zv), two roller masses m_(zri) (i = 1,2), two springs k_(zi) (i = 1,2) and two dampers c_(zi) (i = 1,2), is presented in this paper. Based on the dynamic equilibrium equations of the four-degree-of-freedom (dof) moving spring-damper-mass (SDM) system, the element property matrices of the presented element are derived. The interactions between the moving SDM system and the plate are considered, by means of shape functions, in the last matrices. Because the element property matrices of the presented element vary with its instantaneous position on the plate, they are time-dependent matrices, so are the overall property matrices of the entire vibrating system. Dynamic responses of the structural system are calculated by solving the equations of motion of the entire vibrating system with Newmark integration method. Some factors, such as moving speed, spring constants and the position for centre of gravity of lumped mass of the SDM system, closely relating to the title problem are investigated. Numerical results show that the influences of the foregoing parameters on the dynamic responses of the moving subsystem and the plate are considerable.

英文摘要

本文提出移動四自由度彈簧-阻尼-質量元素(由一個集結質量m_(zv)、二個滾輪質量m_(zri) (i = 1,2)、二個彈簧k_(zi) (i = 1,2)與二個阻尼c_(zi) (i = 1,2)所組成)的理論來進行承受移動負荷之長方形板的振動分析,以便將移動負荷的旋轉慣性效應、平移慣性效應、彈簧效應與阻尼效應納入考慮。在本研究中,上述移動四自由度彈簧-阻尼-質量元素的元素特性矩陣是由移動彈簧-阻尼-質量(SDM)系統的動態平衡方程式推導而得。由於彈簧-阻尼-質量系統與支撐長方形板間的交互作用效應已利用形狀函數將其考慮在上述元素特性矩陣內部,因此,元素特性矩陣將隨其瞬時位置而變化,而整體振動系統的特性矩陣也將隨著變化。最後,本文將利用Newmark直接積分法來求解整個結構系統的運動方程式,並計算整體結構系統的動態反應。一些與本研究相關的重要參數(例如:移動SDM系統的速度、彈簧常數、集中質量的中心位置)將加以探討,由本文所提出的數值結果可以發現,上述參數對移動SDM系統與長方形板的影響相當大。

主题分类 工程學 > 機械工程
工程學 > 交通運輸工程
参考文献
  1. Bathe, K.J.(1982).Finite Element Procedures in Engineering Analysis.Upper Saddle River, NJ, USA:Prentice-Hall.
  2. Chang, T.P.,Liu, Y.N.(1996).Dynamic finite element analysis of a nonlinear beam subjected to a moving load.Int. J. Solids Struct.,33,1673-1688.
  3. Chatterjee, P.K.,Datta, T.K.(1995).Dynamic analysis of arch bridges under travelling loads.J. Solids Struct.,32,1585-1594.
  4. Cifuentes, A.O.(1989).Dynamic response of a beam excited by a moving mass.Finite Elem. Anal. Des.,5,237-246.
  5. Frýba, L.(1972).Vibration of Solids and Structures under Moving Loads.Groningen, Netherlands:Noordhoff International Publishing.
  6. Gbadeyan, J.A.,Oni, S.T.(1995).Dynamic behaviour of beams and rectangular plates under moving loads.J. Sound Vib.,182,677-695.
  7. Hino, J.,Yoshimura, T.,Ananthanarayana, N.(1985).Vibration analysis of non-linear beams subjected to a moving load using the finite element method.J. Sound Vib.,100,477-491.
  8. Kononov, A.V.,Borst, R.(2001).Radiation emitted by a constant load in a circular motion on an elastically supported mindlin plate.J. Sound Vib.,245,45-61.
  9. Lin, Y.H.,Trethewey, M.W.(1990).Finite element analysis of elastic beams subjected to moving dynamic loads.J. Sound Vib.,136,323-342.
  10. Marchesiello, S.,Fasana, A.,Garibaldi, L.,Piombo, B.A.D.(1999).Dynamics of multi-span continuous straight bridges subject to multi-degrees of freedom moving vehicle excitation.J. Sound Vib.,224,541-561.
  11. Olsson, M.(1985).Finite element, modal co-ordinate analysis of structures subjected to moving loads.J. Sound Vib.,99,1-12.
  12. Przemieniecki, J.S.(1985).Theory of Matrix Structural Analysis.New York, NY, USA:McGraw-Hill.
  13. Rogers, G.L.(1959).Dynamics of Framed Structures.New York, NY, USA:John Wiley & Sons, Inc..
  14. Takabatake, H.(1998).Dynamic analysis of rectangular plates with stepped thickness subjected to moving loads including additional mass.J. Sound Vib.,213,829-842.
  15. Thambiratnam, D.,Zhuge, Y.(1996).Dynamic analysis of beams on an elastic foundation subjected to moving loads.J. Sound Vib.,198,149-169.
  16. Wu, J.J.(2003).Dynamic analysis of a rectangular plate subjected to multiple forces moving along a circular path.J. Sound Vib.,260,369-387.
  17. Wu, J.J.(2004).Dynamic responses of a three-dimensional framework due to a moving carriage hoisting a swinging object.Int. J. Numer. Methods Eng.,59,1679-1702.
  18. Wu, J.S.,Lee, M.L.,Lai, T.S.(1987).The dynamic analysis of a flat plate under a moving load by the finite element method.J. Numer. Methods Eng.,24,743-762.
  19. Yang, T.Y.(1986).Finite Element Structural Analysis.Englewood Cliffs, NY, USA:Prentice-Hall.
  20. Yoo, H.H.,Chung, J.(2001).Dynamics of rectangular plates undergoing prescribed overall motion.J. Sound Vib.,239,123-137.
  21. 薛光迪(2003)。Kaohsiung, Taiwan,國立高雄海洋科技大學輪機工程所固力組=Department of Marine Engineering, National Kaohsiung Marine University。