题名

應用約略集合理論建立電磁干擾診斷系統

并列篇名

Application of Rough Set Theory to EMI Diagnosis

作者

黃承龍(Cheng-Lung Huang);李得盛(Te-Sheng Li);彭定國(Ting-Kuo Peng);施政男(Cheng-Nan Shih)

关键词

資料探勘 ; 電磁干擾 ; 約略集合理論 ; 屬性化簡 ; Data Mining ; Rough Set Theory ; Attributes Reduction ; Electromagnetic Interference

期刊名称

管理與系統

卷期/出版年月

11卷3期(2004 / 09 / 01)

页次

367 - 385

内容语文

繁體中文

中文摘要

「電磁干擾」(EMI, Electromagnetic Interference)可能造成工廠機器故障、錯誤動作而發生不可預料的情況。如果產品有EMI品質不良,必須針對不符合測試標準的產品進行修改,直到產品通過標準測試值之後,才能將產品出貨。EMI診斷由有經驗的工程師找到EMI問題的根源,此工作耗時且困難,建立一套EMI診斷決策系統有助於縮短診斷時間。本研究應用資料探勘領域中的知識發掘理論-約略集合理論(RST, Rough Set Theory)找到診斷知識。RST用來處理含糊與不精確資訊,此法不需要對資料集有先驗或是額外的資訊。以RST探勘輸入變數與不良位置之間存在的法則知識,其步驟如下:資料蒐集、資料前處理、屬性值離散化、屬性化簡、最小屬性集過濾、產生法則、過濾法則、做分類、計算分類正確率以及建立診斷系統等步驟。以國內知名主機板廠商的EMI歷史資料做資料探勘,透過上述步驟所建立的RST診斷法則平均有八成的正確率,已達到實務應用的要求。

英文摘要

Electromagnetic emissions are radiated from every part of motherboards of personal computers, and thus electromagnetic interference (EMI) occurs. EMI has a bad effect on the surrounding environment because EMI may cause malfunctions or fatal problems of other digital devices. EMI engineers diagnose EMI problems of motherboard from the electromagnetic noise data measured by the Spectrum Analyzer. It is time consuming to find out the sources (PS2, USB, VGA, etc.) of electromagnetic noise. Rough set theory (RST) is a new mathematical approach to data analysis. This paper constructs an EMI diagnostic system based on RST. There are the following steps: Data Collection, Data Preprocessing, Descretization, Attribute Reduction, Reduction Filtering, Rule Generation, Rule Filtering, Classification, and Accuracy Calculation. Historical EMI noise data, colleted from a famous motherboard company in Taiwan, are used to generate diagnostic rules. The result of our research (average diagnostic accuracy of 80%) shows that RST model is a promising approach to EMI diagnostic support system.

主题分类 基礎與應用科學 > 統計
社會科學 > 財金及會計學
社會科學 > 管理學
参考文献
  1. Ahna, B. S.,Cho, S. S.,Kim, C. Y.(2000).The Integrated Methodology of Rough Set Theory and Artificial Neural Network for Business Failure Prediction.Expert Systems with Applications,18,65-74.
  2. Archambeault, B.,Connor, S.(2002).IEEE International Symposium on EMC.
  3. Bayardo, R. J.,Rakesh, A.,Dimitrios G.(1999).Constraint-Based Rule Mining in Large, Dense Databases.Proceeding of the 15th International Conference on Data Engineering
  4. Ben-Arieh, D.,Chopra, M.,Bleyberg, M. Z.(1998).Data Mining Application for Real-time Distributed Shop Floor Control.IEEE International Conference on Systems, Man, and Cybernetics
  5. Chen, F.-L.,Liu, S.-F.(2000).A Neural-Network Approach To Recognize Defect Spatial Pattern In Semiconductor Fabrication.IEEE transactions on semiconductor manufacturing,13(3),366-373.
  6. Dimitras, A. I. Slowinski,R.,Susmaga, R.,Zopounidis, C.(1999).Business Failure Prediction Using Rough Sets.European Journal of Operational Research,114,263-280.
  7. Gardner, R.,Bieker, J.(2000).Solving Tough Semiconductor Manufacturing Problems Using Data Mining.IEEE/SEMI Advanced Semiconductor Manufacturing Conference
  8. Han, J,Kamber, M.(2001).Data Mining: Concepts and Techniques.San Francisco, CA:Morgan Kaufmann Publishers.
  9. Hui, S. C.,Jha, G.(2000).Data Mining for Customer Service Support.Information &Management,38,1-13.
  10. Johnson, D. S.(1974).Approximation Algorithms for Combinatorial Problems.Journal of Computer and System Sciences,9,256-278.
  11. Kusiak, A.(2001).Rough Set Theory: A Data Mining Tool for Semiconductor Manufacturing.IEEE Transactions on Electronics Packaging Manufacturing,24(1),44-50.
  12. Kusiak, A.(2000).Decomposition in Data Mining: An Industrial Case Study.IEEE Transactions on Electronics Packaging Manufacturing,23(4),345-353.
  13. Lee, J.-H.,Yu, S.-J.,Park S.-C.(2001).IEEE transactions on semiconductor manufacturing.
  14. McKee, T. E.,Lensberg, T.(2002).Genetic Programming and Rough Sets: A Hybrid Approach to Bankruptcy Classification.European Journal of Operational Research,138,436-451.
  15. Mills, J. P.(1993).Electromagnetic Interference.New Jersey:Prentice Hall.
  16. Morgan, D.(1994).A Handbook for EMC Testing and Measurement.London:Peter Peregrinus.
  17. Pawlak, Z.(1991).Rough Sets: Theoretical Aspects of Reasoning About Data.Boston:Kluwer Academic Publishers.
  18. Pawlak, Z.(1982).Rough Sets.International Journal of Information and Computer Sciences,11,341-356.
  19. Pawlak, Z.,Grzymala-Busse, J. W.,Slowinski, R.,Ziarko, W.(1995).Rough Sets.Communications of the ACM,38(11),89-95.
  20. Pawlak, Z.,Slowinski, R.(1994).Rough Set Approach to Multiattribute Decision Analysis.European Journal of Operational Research,72,443-459.
  21. Quinlan, J. R.(1993).C4.5: Programs for Machine Learning.San Francisco, CA:Morgan Kaufmann Publishers.
  22. Quinlan, J. R.(1986).Induction of Decision Trees.Machine Learning,1(1),81-106.
  23. Skinner, K. R.,Montgomery, D. C.,Runger, G. C.,Fowler, J. W.,McCarville, D. R.,Rhoads, T. R.,Stanley, J. D.(2002).Multivariate Statistical Methods for Modeling and Analysis of Wafer Probe Test Data.IEEE transactions on semiconductor manufacturing,15(4),523-530.
  24. Slowinski, R.,Stefanowski, J.(1994).New Approaches in Classification and Data Analysis.Berlin:Springer.
  25. Sushmita, M.,Sankar, K. P.,Pabitra, M.(2002).Data Mining in Soft Computing Framework: A Survey.IEEE Transactions on Neural Networks,13(1),3-14.
  26. Vinterbo, S.,Øhrn, A.(2000).Minimal Approximate Hitting Sets and Rule Templates.International Journal of Approximate Reasoning,25(2),123-143.
  27. Walczak, B.,Massart, D. L.(1999).Rough Set Theory.Chemometrics and Intelligent Laboratory Systems,47,1-16.
  28. Yoshida, T.,Touzaki, H.(1999).A Study on Association Among Dispatching Rules in Manufacturing Scheduling Problems.IEEE International Conference on Emerging Technologies and Factory Automation,2,1355-1360.
  29. 簡禎富、林鼎浩、彭誠湧、徐紹鐘(2001)。建構半導體晶圓允收測試資料挖礦架構及其實證研究。工業工程學刊,18(4),37-48。
被引用次数
  1. 劉任昌、葉馬可、李世欽(2014)。國內期刊國際化之影響:以工業工程學刊為例。臺灣企業績效學刊,8(1),35-55。