题名

異質變異資產之成份風險值評價投資組合風險值:極值方法之應用

并列篇名

Evaluation of Portfolio VaR Using the Component VaR for Heteroskedastic Volatility Assets: An Application of Extreme Value Method

作者

林楚雄(Chu-Hsiung Lin);王韻怡(Yun-Yi Wang)

关键词

成份風險值 ; 投資組合風險值 ; 極值理論 ; GARCH模型 ; Component VaR ; Portfolio VaR ; Extreme Value Theory ; GARCH Model

期刊名称

管理與系統

卷期/出版年月

15卷1期(2008 / 01 / 01)

页次

33 - 53

内容语文

繁體中文

中文摘要

本研究提出藉由加總個別資產成份風險值(Component VaR)以得到投資組合風險值的一個方法,此方法不但可減少共變異數估計的個數,而且由於成份風險值的計算,提供了各資產部位對於整體投資組合風險值的貢獻程度,因而可作爲風險調整的依據。首先,本文利用成份風險值(Component VaR)的分析方法,解析得到可將一個投資組合風險值分解成爲各項資產成份風險值的總和。因此,估計一個投資組合風險值的問題將可轉化爲估計投資組合中個別資產成份風險值的問題,進而可避免估計投資組合風險值時需要面臨估計變異數與共變異數的複雜問題,尤其當投資組合的數目眾多時。其次,爲了解決資產報酬分配具有厚尾以及異質變異數的問題,本文使用考慮異質變異數的極值方法以估計成份風險值。本研究以4種股價指數所建構的投資組合來驗證本文方法的準確性。經失敗率、平均失敗誤差以及Kupiec(1995)之非條件與條件涵蓋比率檢定結果,顯示在高信賴水準下,新估計法具有高度的準確性。

英文摘要

This study proposes a new approach to efficiently and precisely estimating portfolio VaR. This approach not only simplifies the procedure of estimation, but also solves the bias problems resulted from fat-tails and heteroskedasticity of return distributions. We first employ component VaR (CVaR) analysis to decompose the portfolio VaR as the sum of each CVaR. Consequently, this decomposition can lower down the complexity existing in estimating the variance and covariance of component asset returns. This simplification takes on a special significance when the portfolio is highly complex. In addition, to precisely estimate the portfolio VaR, we fit the component return distributions by the GARCH model, and then turn to estimate their left-tail indices through the application of extreme value theory (EVT). The tail index derived can further lead to the computation of individual VaR and component VaR of each component asset. The aggregate portfolio VaR can thus be determined by adding up the entire CVaRs. To verify the validity of the proposed approach, we present analysis of failure ratio, the bias of failure loss and Kupiec test (1995). All the results show that the proposed approach significantly improves the estimation efficiency and accuracy, which also shed light on the development of risk management theory as well as portfolio strategies.

主题分类 基礎與應用科學 > 統計
社會科學 > 財金及會計學
社會科學 > 管理學
参考文献
  1. Alexander, C. O.(2001).Orthogonal GARCH.Mastering Risk,2,21-38.
  2. Bali, T. G.(2003).An Extreme Value Approach to Estimating Volatility and Value at Risk.Journal of Business,76,83-108.
  3. Barone-Adesi, G.,Bourgoin, F.,Giannopoulos, K.(1998).Don`t Look Back.Risk,11,100-103.
  4. Beatriz, V.(2000).Computing Robust Risk Measures in Emerging Equity Markets Using Extreme Value Theory.Emerging Markets Quarterly,4,25-46.
  5. Berndt, B.,Hall, B.,Hall, R.,Haussman, J.(1974).Estimation and Inference in Nonlinear Structural Models.Annals of Economic and Social Measurement,4,653-665.
  6. Billio, M.,Pelizzon, L.(2000).Value-at-Risk: A Multivariate Switching Regime Approach.Journal of Empirical Finance,7,531-554.
  7. Bollerslev, T.(1986).Genenralized Autoregressive Conditional Heteroskedascicity.Journal of Econometrics,31,307-327.
  8. Bollerslev, T.(1990).Modeling the Coherence in Short-Run Nominal Exchange Rates: A Multivariate Generalized ARCH Approach.Review of Economics and Statistics,72,498-505.
  9. Bollerslev, T.,Chou, R.,Kroner, K.(1992).ARCH Modeling in Finance: A Selective Review of Theory and Empirical Evidence.Journal of Econometrics,52,5-59.
  10. working paper, Bums Statistics
  11. Carroll, R. B.,Perry, T.,Yang, H.,Ho, A.(2001).A New Approach to Component VaR.Journal of Risk,3,57-65.
  12. Danielsson, J.,de Vries, C. G.(1997).Tail Index and Quantile Estimation with Very High Frequency Data.Journal of Empirical Finance,4,241-257.
  13. Dickey, D.,Fuller, W. A.(1981).Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root.Econometrica,49,1057-1072.
  14. Dickey, D.,Fuller, W. A.(1979).Distribution of the Estimations for Autoregressive Time Series with a Unit Root.Journal of the American Statistical Association,74,427-431.
  15. Diebold, F.,Schuermann, T.,Stroughair, J.(2000).Pitfalls and Opportunities in the Use of Extreme Value Theory in Risk Management.Journal of Risk Finance,1,30-36.
  16. Engle, R.(2002).Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models.Journal of Business & Economic Statistics,20,339-350.
  17. Engle, R. F.,Kroner, K. F.(1995).Multivariate Simultaneous Generalized ARCH.Econometric Theory,11,122-150.
  18. Value-at-Risk Analysis of Stock Returns Historical Simulation, Variance Techniques or Tail Index Estimation?
  19. Robust Conditional Variance Estimation and Value-at-Risk
  20. Hall, P.(1990).Using the Bootstrap to Estimate Mean Square Error and Select Smoothing Parameter in Nonparametric Problems.Journal of Multivariate Analysis,32,177-203.
  21. Hallerbach, W. G.(2002).Decomposing Portfolio Value-at-Risk: A General Analysis.Journal of Risk,5,1-18.
  22. Hill, B. M.(1975).A Simple General Approach to Inference about the Tail of a Distribution.Annals of Statistics,3,1163-1174.
  23. Huisman, R.,Koedijk, K.,Kool, C.,Palm, F.(2001).Tail-Index Estimates in Small Samples.Journal of Business & Economic Statistics,19,208-216.
  24. Huisman, R.,Koedijk, K.,Pownall, R. A. J.(1998).VaR-x: Fat Tails in Financial Risk Management.Journal of Risk,1,47-61.
  25. Jansen, D. W.,de Vries, C. G.(1991).On the Frequency of Large Stock Returns: Putting Booms and Busts into Perspectives.Review of Economics and Statistics,73,18-24.
  26. Jorion, P.(2000).Value at Risk.McGraw-Hill.
  27. Kearns, P.,Pagan, A.(1997).Estimating the Density Tail Index for Financial Time Series.Review of Economics and Statistics,79,171-175.
  28. Kocdijk, K.,Stork, P.,de Vries, C. G.(1992).Differences between Foreign Exchange Rate Regimes: The View from the Tails.Journal of International Money and Finance,11,462-473.
  29. Koedijk, K.,Schafgans, M.,de Vries, C. G.(1990).The Tail Index of Exchange Rate Returns.Journal of International Economics,29,93-108.
  30. Kroner, K. F.,Ng, V. K.(1998).Modeling Asymmetric Comovements of Assets Returns.Review of Financial Studies,11,817-844.
  31. Kupiec, P.(1995).Technique for Verifying the Accuracy of Risk Measurement Model.Journal of Derivative,3,73-84.
  32. Ljung, G.,Box, G.(1978).On a Measure of a Lack of Fit in Time Series Models.Biometrica,65,297-303.
  33. Longin, F. M.(1996).The Asymptotic Distribution of Extreme Stock Market Returns.Journal of Business,69,383-408.
  34. Mason, D. M.(1982).Laws of Large Numbers for Sums of Extreme Values.Annals of Probability,10,754-764.
  35. McNeil, A. J.,Frey, R.(2000).Estimation of Tail-Related Risk Measure for Heteroscedastic Financial Time Series: An Extreme Value Approach.Journal of Empirical Finance,7,271-300.
  36. Morgan, J. P.(1995).Riskmetrics Technical Manual.New York:
  37. Phillips, P. C. B.,Perron, P.(1988).Testing for a Unit Root in Time Series Regression.Biotnetrica,75,335-346.
  38. working paper, Olsen and Associates
  39. Poon, S.,Rockinger, M.,Tawn, J.(2004).Extreme-Value Dependence in Financial Markets: Diagnostics, Models and Financial Implications.Review of Financial Studies,17,581-610.
  40. Pownall, R. A.,Koedijk, K. G.(1999).Capturing Downside Risk in Financial Markets: The Case of the Asian Crisis.Journal of International Money and Finance,18,853-870.
  41. Quintos, C.,Fan, Z.,Phillips, P. C. B.(2001).Structural Change Tests in Tail Behaviour and the Asian Crisis.Review of Economic Studies,68,633-663.
  42. Tse, Y. K.,Tsui, A. K. C.(2002).A Multivariate GARCH Model with Time-Varying Correlations.Journal of Business and Economic Statistics,20,351-362.
  43. Wagner, N.,Marsh, T. A.(2005).Measuring Tail Thickness under GARCH and an Application to Extreme Exchange Rate Changes.Journal of Empirical Finance,12,165-185.
  44. 林楚雄、陳宜玫(2002)。台灣股票市場風險值仨測模型之實證研究。管理學報,19(4),737-758。