题名

Extended Research on an Imperfect Process Production-inventory Model with Deteriorating Items under Two Dispatching Policies

并列篇名

兩種存貨派用策略下不完美製程損耗性商品生產存貨模式之延伸研究

作者

宋振昌(June-Chun Sung);林正興(Chen-Sin Lin);宮大川(Dah-Chuan Gong)

关键词

存貨 ; 損耗商品 ; 不完美製程 ; 先進先出 ; 後進先出 ; Inventory ; Deteriorating Item ; Imperfect Process ; FIFO ; LIFO

期刊名称

管理與系統

卷期/出版年月

16卷3期(2009 / 07 / 01)

页次

415 - 437

内容语文

英文

中文摘要

先進先出(FIFO)與後進先出(LIFO)爲存貨管理最常預設的策略,其選用必需符合企業實際生產情況,尤其當產品爲易受製程偏移影響之損耗性商品。本研究首先針對不完美製程損耗性商品提出FIFO策略下之生產存貨模式,隨後應用指數函數之泰勒展開式推導出近似最佳生產運轉時間之封閉解,並以數值範例說明模式精確性。再者,研究中將所獲得之模式與先前提出之LIFO策略生產存貨模式比較,並獲致損耗性商品於不完美製程生產時,LIFO存貨派用策略優於FIFO策略之結論。最後,透過敏感度分析展現FIFO策略下各參數之影響。

英文摘要

The First-In-First-Out (FIFO) and the Last-In-First-Out (LIFO) are the most general presumption policies of the inventory management. These presumptions are carefully considered in line with the actual practice of most business entities, especially when the merchandise or goods which have the deteriorating property affected by an imperfect production process. In this study, we firstly propose a production-inventory model for deteriorating items under an imperfect production process with FIFO inventory dispatching policy. Then, a closed-form solution of a near-optimal production uptime will be derived by utilizing Taylor series expansion of an exponential function. A numerical example is provided to argue the model’s fidelity. Also, a comparison with our previous research work-an LIFO policy production-inventory model is made. We conclude that when a deteriorating item is produced by an imperfect process, the LIFO inventory dispatch policy would be a better decision than the FIFO. Finally, sensitivity analysis is given to investigate the impacts that various parameters have in FIFO policy choice.

主题分类 基礎與應用科學 > 統計
社會科學 > 財金及會計學
社會科學 > 管理學
参考文献
  1. Lin, G. C.,Gong, D.-C.(2007).On a Production-inventory Model for Deteriorating Items Subject to an Imperfect Process.Journal of the Chinese Institute of Industrial Engineers,24(4),319-326.
    連結:
  2. Bazaraa, M. S.,Sherali, H. D.,Shetty, C. M.(2006).Nonlinear Programming: Theory and Algorithms.New York:John Wiley & Sons.
  3. Chung, K.-J.,Hou, K.-L.(2003).An Optimal Production Run Time with Imperfect Production Processes and Allowable Shortages.Computers & Operations Research,30(4),483-490.
  4. Ghare, P. M.,Schrader, G. F.(1963).A Model for Exponential Decaying Inventory.Journal of Industrial Engineering,14(5),238-243.
  5. Giri, B. C.,Moon, I.,Yun, W. Y.(2003).Scheduling Economic Lot Ssizes in Deteriorating Production Systems.Naval Research Logistics,50(6),650-661.
  6. Goyal, S. K.,Giri, B. C.(2001).Recent Trends in Modeling of Deteriorating Inventory.European Journal of Operational Research,134(1),1-16.
  7. Lin, C.-S.(1999).Integrated Production-inventory Models with Imperfect Production Processes and A Limited Capacity for Raw Materials.Mathematical and Computer Modeling,29(2),81-89.
  8. Lin, G. C.,Dennis, E. K.,Lin, C. J.(2006).Determining a Common Production Cycle Time for an Economic Lot Scheduling Problem with Deteriorating Items.European Journal of Operational Research,173(2),669-682.
  9. Mak, K. L.(1982).A Production Lot Size Inventory Model for Deteriorating Items.Computers and industrial engineering,6(4),309-317.
  10. Misra, R. B.(1975).Optimum Production Lot Size Model for a System with Deteriorating Inventory.International journal of production research,13(5),495-505.
  11. Nahmias, S.(2001).Production and Operations Analysis.Boston:McGraw-Hill Irwin.
  12. Osteryoung, J. S.,Nosari, E.,McCarty, D. E.,Reinhart, W. J.(1986).Use of EOQ Model for Inventory Analysis.Production and Inventory Management,27(3),39-45.
  13. Porteus, E. L.(1986).Optimum Lot Sizing, Process Quality Improvement and Setup Cost Reduction.Operations Research,34(1),137-144.
  14. Raafat, F.(1991).Survey of Literature on Continuously Deteriorating Inventory Models.Journal of Operational Research Society,42(1),27-37.
  15. Rosenblatt, M. J.,Lee, H. L.(1986).Economic Production Cycles with Imperfect Production Process.IIE Transactions,18(1),48-55.
  16. Ross, S. M.(2002).Introduction to Probability Models.New York:Academic Press.