题名

ACD模型在台灣股票市場的適用性分析-以聯電公司為例

并列篇名

The Adaptation for the ACD Model to Taiwan Stock Market-The Case of UMC

作者

涂登才(Teng-Tsai Tu);巫春洲(Chun-Chou Wu)

关键词

自我相關條件時距 ; Box-Cox轉換 ; 衝擊反應函數 ; Burr分配 ; D-test ; ACD Model ; Box-Cox Transformation ; Shock Impact Function ; Burr Distribution ; D-test

期刊名称

管理與系統

卷期/出版年月

17卷1期(2010 / 01 / 01)

页次

107 - 130

内容语文

繁體中文

中文摘要

台灣證券交易所於2005年3月1日之後,縮小股票交易價格的升降單位(tick size),原始目的主要是爲了提高交易的流動性。因此,本研究針對在台灣股票市場交易相對活絡之聯華電子公司2005年3月1日以後的交易資料,進行ACD族模型效果分析。針對對稱型的ACD族模型:包括SLACD、LACDI、LACDⅡ、BCACD及PACD等結構與非對稱型的ACD族模型:包括EXACD、A-ACD、A-PACD、A-LACD以及AUACD等進行模型參數估計、條件時距嚴格定態檢定及模型配適檢定。不管對稱型或非對稱型的ACD族模型而言,實證結果支持將殘差項假設爲Burr分配是適當的。另外,在非對稱型ACD族模型中,利用AIC值、SBIC值及最大概似估計値對不同ACD模型結構的比較,較大的估計值結果出現在LACDI模型與A-ACD模型當中。整體而言,在擴增型ACD族中以A-ACD模型之配適效果爲最佳。

英文摘要

After March 1, 2005, Taiwan Security Exchange changes the tick size of stocks trading to a smaller scale. The main idea for this regime is to boost market liquidity. In this paper, we investigate the fitness for the ACD model with the relative active stock in Taiwan security market. Both of the symmetry and asymmetry structure for ACD family are incorporated in our analysis. After using several criterions for model selection, the Burr distribution for disturbance term is appropriate. Meanwhile, judging from the indicators of the AIC, SBIC and LLF, the LACDI and the A-ACD models outperform than others. As to the augmented ACD family models, the A-ACD structure is relative well in fitness based on our underlying stock.

主题分类 基礎與應用科學 > 統計
社會科學 > 財金及會計學
社會科學 > 管理學
参考文献
  1. Bauwens, L.,Giot, P.(2000).The Logarithmic ACD Model: An Application to the Bid-Ask Quote Process of Three NYSE Stocks.Annales d'Economie et de Statistique,60,117-150.
  2. Bollerslev, T.(1990).Modeling the Coherence in Short-Run Nominal Exchange Rates: A Multivariate Generalized ARCH Model.Review of Economics and Statistics,72,498-505.
  3. Bollerslev, T.,Engle, R. F.,Wooldridge, J. M.(1988).A Capital Asset Pricing Model with Time Varying Covariances.Journal of Political Economy,96,116-131.
  4. Brandt, M. W.,Jones, C. S.(2006).Volatility Forecasting with Range-Based EGARCH Models.Journal of Business & Economic Statistics,24(4),470-486.
  5. Chou, R.(2005).Forecasting Financial Volatilities with Extreme Values: The Conditional Autoregressive Range (CARR) Model.Journal of Money Credit and Banking,37,561-582.
  6. Working Paper
  7. Engle, R. F.(2000).The Econometrics of Ultra-High-Frequency Data.Econometrica,68,1-22.
  8. Engle, R. F.(2002).Dynamic Conditional Correlation -- A Simple Class of Multivariate GARCH Models.Journal of Business & Economic Statistics,20,339-350.
  9. Engle, R. F.,Kroner, F. K.(1995).Multivariate Simultaneous Generalized ARCH.Econometric Theory,11,122-150.
  10. Engle, R. F.,Russell, J. R.(1998).Autoregressive Conditional Duration: A New Model for Irregularly-Spaced Transaction Data.Econometrica,66,1127-1162.
  11. Fernandes, M.,Grammig, J.(2006).A Family of Autoregressive Conditional Duration Models.Journal of Econometrics,127,1-23.
  12. Giot, P.(2000).Time Transformations, Intraday Data and Volatility Models.Journal of Computational Finance,4,31-62.
  13. Harris, L.(1986).A Transaction Data Study of Weekly and Intradaily Patters in Stocks Returns.Journal of Financial Economics,16,99-117.
  14. Hentschel, L.(1995).All in the Family: Nesting Symmetric and Asymmetric GARCH Models.Journal of Financial Economics,39,71-104.
  15. Hong, Y.,Lee, T. H.(2003).Diagnostic Checking for the Adequacy of Nonlinear Time Series Models.Econometric Theory,19,1065-1121.
  16. Ljung, G. M.,Box, G. E. P.(1978).On a Measure of Lack of Fit in Time Series Models.Biometrika,65,297-303.
  17. Working Paper
  18. Meitz, M.,Teräsvirta, T.(2006).Evaluating Models of Autoregressive Conditional Duration.Journal of Business & Economic Statistics,24,104-124.
  19. Parkinson, M.(1980).The Extreme Value Method for Estimating the Variance of the Rate of Return.Journal of Business,53,61-65.
  20. Wood, R. A.,McInish, T. H.,Ord, J. K.(1985).An Investigation of Transactions Data for NYSE Stocks.Journal of Finance,40,726-739.
  21. Zhang, M. Y.,Russell, J. R.,Tsay, R. S.(2001).A Nonlinear Autoregressive Conditional Duration Model with Applications to Financial Transaction Data.Journal of Econometrics,104,179-207.
  22. 謝佩吟(2006)。國立交通大學經營管理研究所未出版碩士論文。