题名

Lévy與GARCH-Lévy過程之選擇權評價與實證分析:台灣加權股價指數選擇權為例

并列篇名

Option Pricing under Lévy Processes and GARCH-Lévy Processes: An Empirical Analysis on TAIEX Index Options

作者

吳仰哲(Yang-Che Wu);廖四郎(Szu-Lang Liao);林士貴(Shih-Kuei Lin)

关键词

選擇權評價模型 ; Lévy過程 ; GARCH ; Variance Gamma過程 ; Normal Inverse Gaussian過程 ; Option Pricing Model ; Lévy Process ; GARCH Process ; Variance Gamma ; Normal Inverse Gaussian process

期刊名称

管理與系統

卷期/出版年月

17卷1期(2010 / 01 / 01)

页次

49 - 74

内容语文

繁體中文

中文摘要

根據過去實證指出,股價對數報酬率分配呈現高峰、偏態、厚尾及波動叢聚,而傳統Black-Scholes模型的缺點是無法捕捉這些現象。Lévy過程之優點爲能解決厚尾、高峰及偏態等問題,而GARCH-type優點爲能捕捉波動叢聚現象,本文結合兩者的優點提出GARCH-Lévy過程以捕捉負偏態、高峰、厚尾及波動叢聚等報酬分配特徵,並且以蒙地卡羅法估算歐式買權的報價;更進一步綜合文獻常採用選擇權評價模型,以台灣發行量加權股價指數與指數選擇權作爲研究對象,分別對GARCH-Lévy過程、布朗運動、Merton跳躍擴散過程、GARCH-Normal過程和Lévy過程等作實證分析比較,結果顯示GARCH-Lévy過程在樣本內對台股指數有較佳的配適,但是在樣本外,variance gamma選擇權評價模型對價平時的台指選擇權有最小評價誤差,價內外則是NGARCH-Normal選擇權評價模型的評價誤差最小。

英文摘要

The distribution of stock log-returns shows empirically some stylized facts, such as excess kurtosis, skewness, heavy tails and volatility clustering. The assumptions of traditional Black-Scholes model fail to capture the above phenomena well. Lévy processes can deal with the former three phenomena and GARCH type models can handle the final phenomena. In this research, we propose GARCH-Lévy processes combining both Lévy processes and GARCH processes, and then price European call option in risk-neutral world via Monte Carlo simulations. The empirical results show that the GARCH-Lévy processes fit well in samples. For out-of-sample performance, however, variance gamma option pricing model is the best at the money, but NGARCH-Normal option pricing model is best in the money or out of the money.

主题分类 基礎與應用科學 > 統計
社會科學 > 財金及會計學
社會科學 > 管理學
参考文献
  1. Chen, Y.-T.(2003).On the Discrimination of Competing GARCH-type Models for Taiwan Stock Index Returns.Academia Economic Papers,31(3),369-405.
    連結:
  2. Aas, K.,Haff, I. H.(2006).The Generalized Hyperbolic Skew Student's t-distribution.Journal of Financial Econometrics,4(2),275-309.
  3. Akigiray, V.,Booth G.(1998).Mixed Diffusion-Jump Process Modeling of Exchange Rate Movements.The Review of Economics and Statistics,70(4),631-637.
  4. Badescu, A.,Kulperger, R.,Lazar, E.(2008).Option Valuation with Normal Mixture GARCH Models.Studies in Nonlinear Dynamics & Econometrics,12(2)
  5. Baillie, R.,Bollerslev, T.(1986).The Message in Daily Exchange Rates: A Conditional- Variance Tale.Journal of Business and Economic Statistics,7(1),297-305.
  6. Bakshi, G.,Madan, D. B.(2000).Spanning and Derivative Security Valuation.Journal of Financial Economics,55(2),205-238.
  7. Barndoff-Nielsen, O. E.(1995).Normal Inverse Gaussian Distributions and the Modeling of Stock Returns.Research Report No. 300, Department of Theoretical Statistics.
  8. Beine M. S.,Laurent S.,Lecourt C.(2002).Accounting for Conditional Leptokurtosis and Close Days Effects in FIGARCH Models of Daily Exchange Rates.Applied Financial Economics,12(8),589-600.
  9. Black, F.,Scholes, M.(1973).The Pricing of Options and Corporate Liabilities.Journal of Political Economy,81(3),637-654.
  10. Bollerslev T.(1987).A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return.Review of Economics and Statistics,69(3),542-547.
  11. Bollerslev T.(1986).Generalized Autoregressive Conditional Heteroskedasticity.Journal of Econometrics,31(3),307-327.
  12. Carr, P.,Geman, H.,Madan, D. B.,Yor, M.(2003).Stochastic Volatility for Lévy Processes.Mathematical Finance,13(3),345-382.
  13. Carr, P.,Geman, H.,Madan, D. B.,Yor, M.(2002).The Fine Structure of Asset Returns: An Empirical Investigation.Journal of Business,75(2),305-332.
  14. Carr, P.,Madan, D.(1999).Option Valuation Using the Fast Fourier Transform.Journal of Computational Finance,2(4),61-73.
  15. Christoffersen, P.,Jacobs, K.(2004).Which GARCH Model for Option Valuation?.Management Science,50(9),1204-1221.
  16. Cont, R.(2001).Empirical Properties of Asset Returns: Stylized Facts and Statistical Issues.Quantitative Finance,1(2),223-236.
  17. Cont, R.,Tankov, P.(2003).Financial Modeling with Jump Processes.CHAPMAN&HALL/CRC Financial Mathematics Series.
  18. Delbean, F.,Schachermayer, W.(1994).A General Version of the Fundamental Theorem of Asset Pricing.Mathematische Annalen,300(3),463-520.
  19. Duan, J.(1995).The GARCH Option Pricing Model.Mathematical Finance,5(1),13-32.
  20. Duan, J.,Gauthier, G.,Sasseville, C.,Simonato, J.(2006).Approximating the GJR-GARCH and EGARCH Option Pricing Models Analytically.Journal of Computational Finance,9(3)
  21. Duan, J.,Zhang, H.(2001).Hang Seng Index Option around the Asian Financial Crisis: A GARCH Approach.Journal of Banking and Finance,25(11),1989-2014.
  22. Dumas, B.,Fleming, J.,Whaley, R. E.(1998).Implied Volatility Functions: Empirical Tests.Journal of Finance,53(6),2059-2106.
  23. Eberiein, E.,Prause, K.(1998).FDM Preprint 56.University of Freiburg.
  24. Eberlein, E.,Keller, U.(1995).Hyperbolic Distribution in Finance.Bernoulli,1(3),281-299.
  25. Eberlein, E.,Keller, U.,Prause, K.(1998).New Insight into Smile, Mispricing and Value at Risk: The Hyperbolic Model.Journal of Business,71(3),371-405.
  26. Engle, R.(1982).Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of U.K. Inflation.Econometrica,50(4),987-1007.
  27. Engle, R.,Ng, V. K.(1993).Measuring and Testing the Impact of News on Volatility.The Journal of Finance,48(5),1749-1778.
  28. Fama, E. F.(1965).The Behavior of Stock Market Price.Journal of Business,38(1),34-105.
  29. Forsberg, L.,Bollerslev, T.(2002).Bridging the Gap between the Distribution of Realized (ECU) Volatility and ARCH Modeling (of the EURO): The GARCH-NIG Model.Journal of Applied Econometrics,17(5),535-548.
  30. González-Rivera, G.,Drost, F. C.(1999).Efficiency Comparisons of Maximum-Likelihood Based Estimators in GARCH Models.Journal of Economics,93(1),93-111.
  31. Heston, S. L.,Nandi, S.(1993).A Closed Form Solution for Options with Stochastic Volatility with Application to Bonds and Currency Options.Review of Financial Studies,6(2),327-343.
  32. Jondeau E.,Rockinger M.(2003).Conditional Volatility, Skewness, and Kurtosis: Existence, Persistence, and Comovements.Journal of Economic Dynamics & Control,27(4),1699-1737.
  33. Working Paper
  34. Lambert P.,Laurent S.(2000).Modeling Financial Time Series Using GARCH-type Models with A Skewed Student Distribution for the Innovations.Discussion Paper 0125.
  35. Madan, D. B.,Carr, P.,Chang, E. C.(1998).The Variance Gamma Process and Option Pricing.European Finance Review,2(1),79-105.
  36. Madan, D. B.,Seneta, E.(1990).The VG Model for Share Market Returns.Journal of Business,63(4),511-524.
  37. Mandelbrot, B.(1963).The Variation of Certain Speculative Prices.Journal of Business,49(4),394-419.
  38. Merton, R. C.(1976).Option Pricing when Underlying Stock Returns are Discontinuous.Journal of Financial Economics,3(1-2),125-144.
  39. Nelson D. B.(1991).Conditional Heteroskedasticity in Asset Returns: A New Approach.Econometrica,59(2),347-370.
  40. Palmitesta, P.,Provasi, C.(2004).GARCH-type Models with Generalized Secant Hyperbolic Innovations.Studies in Nonlinear Dynamics & Economics,8(2)
  41. Pan, J.(2002).The Jump-Risk Premia Implicit in Options: Evidence from an Integrated Time-Series Study.Journal of Financial Economics,63(1),3-50.
  42. Raible, S.(2000).unpublished Ph.D. thesis, Department of Mathematical Stochastics, University of Freiburg.
  43. Schoutens, W.(2001).The Meixner Process in Finance.EURANDOM-Report 2001-02.
被引用次数
  1. 葉仕國、張森林、林丙輝(2016)。台灣衍生性金融商品定價、避險與套利文獻回顧與展望。臺大管理論叢,27(1),255-304。