题名

現金流量風險值之估計

并列篇名

The Estimation of Cash Flow at Risk

作者

潘聖潔(Sheng-Chieh Pan);黃永昇(Yong-Sheng Huang);吳博欽(Po-Chin Wu)

关键词

現金流量風險值 ; 平滑轉換自我迴歸 ; 外生平滑轉換自我迴歸 ; 蒙地卡羅模擬 ; Cash Flow at Risk ; STAR ; STARX ; Monte Carlo Simulation

期刊名称

管理與系統

卷期/出版年月

18卷1期(2011 / 01 / 01)

页次

35 - 70

内容语文

繁體中文

中文摘要

本文分別建立線性的AR與多元迴歸模型,以及非線性的STAR與STARX等四種模型,以求得公司的最適現金流量預測模型,並透過蒙地卡羅模擬估計公司的CFaR,以期更精確地評估公司營運的風險衝擊。研究對象爲台灣50指數中,上市長達十年以上的21家非金融公司,研究期間爲1996年第4季至2007年第3季。實證結果顯示,無論就時間序列或多元迴歸模型而言,絕大多數公司的現金流量變化爲一非線性過程,且與景氣領先指標綜合指數、消費者物價指數、新台幣兌美元匯率與一銀三個月期定期存款利率等總體經濟變數落後期間存在非線性關係。在樣本內估計結果上,STAR模型與STARX模型較線性的AR模型與多元迴歸模型皆提供較佳的配適度;惟樣本外預測結果則顯示,超過70%的樣本公司適合採用線性模型估計CFaR。

英文摘要

This paper first sets up linear AR and multiple regression, nonlinear STAR and STARX models to find out the optimal cash flow forecasting model, then utilizes Monte Carlo simulation to evaluate company's CFaR. The sample objects are 21 non-financial component companies in TSEC Taiwan 50 index. Sample period spans from the 1996. 4Q to 2007. 3Q. Empirical result shows that for time series or multiple regression models almost all companies’ cash flow are fitted by nonlinear process and the relationship between cash flow and macroeconomic variables (Composite Leading Index, Consumer Price Index, TWD/USD Exchange Rate, and 3-month Deposit Rate) is also nonlinear. STAR and STARX models provide better goodness of fit than linear models. But for over 70% companies are suitable to adopt linear model to forecast their CFaRs.

主题分类 基礎與應用科學 > 統計
社會科學 > 財金及會計學
社會科學 > 管理學
参考文献
  1. 吳博欽、申志偉、潘聖潔(2009)。匯率的非線性調整、套利與經濟價值可預測性。人文及社會科學集刊,21(1),101-142。
    連結:
  2. Andrén, N.,Jankensgård, H.,Oxelheim, L.(2005).Exposure-based Cash-Flow-at-Risk: An Alternative to VaR for Industrial Companies.Journal of Applied Corporate Finance,17(3),76-86.
  3. Brooks, C.(1996).Testing for Non-linearity in Daily Sterling Exchange Rates.Applied Financial Economics,6(4),307-317.
  4. Brooks, C.(1997).Linear and Nonlinear Forecastability of High-Frequency Exchange Rates.Journal of Forecasting,16(2),125-145.
  5. Chen, S. L.,Wu, J. L.(2000).A Re-examination of Purchasing Power Parity in Japan and Taiwan.Journal of Macroeconomics,22(2),271-284.
  6. Chow, G. C.(1960).Tests of Equality between Sets of Coefficients in Two Linear Regressions.Econometrica,28(3),591-605.
  7. Dacco, R.,Satchell, S.(1999).Why do Regime Switching Models Forecast so Badly?.Journal of Forecasting,18(1),1-16.
  8. Engle, C.,Hamilton, J. D.(1990).Long Swings in the Dollar: Are They in the Data and Markets Know It?.The American Economic Review,80(4),689-713.
  9. Hayt, G.,Song, S.(1997).Handle with Sensitivity, VAR: Understanding and Applying Value-at-Risk.London:Risk Publications.
  10. Jensen, M. C.(1986).Agency Cost of Free Cash Flow, Corporate Finance, and Takeovers.The American Economic Review,76(2),323-329.
  11. Jorion, P.(2001).Value at Risk.New York:McGraw-Hill Book Co..
  12. Ku, A.(2001).Value at risk: Variations on a Theme.Global Energy Business,May/June,12-19.
  13. Largay, A.,Stickney, P.(1985).Pitfalls in Calculating Cash Flow from Operations.The Accounting Review,60(2),314-328.
  14. Lecocq, D.(2003).Cash Flow at Risk Models: Principle, Application and a Case Study.The Institute of Actuaries in Australia Biennial Convention
  15. Lehn, K.,Poulsen, A.(1989).Free Cash Flow and Stockholder Gains in Going Private Transactions.Journal of Finance,44(3),771-787.
  16. Lin, C. F.,Teräsvirta, T.(1994).Testing the Constancy of Regression Parameters against Continuous Structural Change.Journal of Econometrics,62(2),211-228.
  17. Linsmeier, T. J.,Pearson, N. D.(2000).Value at Risk.Financial Analysis Journal,56(2),47-67.
  18. McMillan, D. G.(2001).Nonlinear Predictability of Stock Market Returns: Evidence form Nonparametric and Threshold Models.International Reviews of Economics and Finance,10,353-368.
  19. Meese, R.,Rogoff, K.(1983).Empirical Exchange Rate Models of the Seventies: Do They Fit Out of Sample?.Journal of International Economics,14(1-2),3-24.
  20. Michael, P.,Nobay, A. R.,Peel, D. A.(1997).Transactions Costs and Nonlinear Adjustment in Real Exchange Rate: An Empirical Investigation.Journal of Political Economy,105(4),862-879.
  21. Morgan, J. P.(1994).RiskMetrics-Technical Document.New York:J. P. Morgan Bank.
  22. Morgan, J. P.(1999).CorporateMetrics Technical Document.New York:Risk Metrics Group.
  23. Öcal, N.,Osborn, D. R.(2000).Business Cycles Non-linearities in UK Consumption and Production.Journal of Applied Econometrics,15(1),27-43.
  24. Sarantis, N.(1999).Modeling Non-linearities in Real Effective Exchange Rates.Journal of International Money and Finance,18(1),27-45.
  25. Sarno, L.,Taylor, M. P.,Peel, D. A.(2003).Nonlinear Equilibrium Correction in U.S. Real Money Balances, 1869-1997.Journal of Money, Credit, and Banking,35(5),787-799.
  26. Shimko, D.(1998).Cash before Value.Risk,11(7),45.
  27. Skalin, J.,Teräsvirta, T.(1999).Another Look at Swedish Business Cycles, 1861-1988.Journal of Applied Econometrics,14(4),359-378.
  28. Stein, J. C.,Usher, S. E.,LaGattuta, D.,Youngen, J.(2001).A Comparables Approach to Measuring Cash Flow at Risk for Non-financial Firms.Journal of Applied Corporate Finance,13(4),100-109.
  29. Stulz, R. M.(1996).Rethinking Risk Management.Journal of Applied Corporate Finance,9(3),8-24.
  30. Teräsvirta, T.(1994).Specification, Estimation and Evaluation of Smooth Transition Auto-regressive Models.Journal of the American Statistical Association,89(425),208-218.
  31. Teräsvirta, T.,Anderson, H. M.(1992).Characterizing Nonlinearities in Business Cycles Using Smooth Transition Autoregressive Models.Journal of Applied Econometrics,7(S),119-136.
  32. Teräsvirta, T.,van Dijk, D.,Medeiros, M. C.(2005).Linear Models, Smooth Transition8 Autoregressions, and Neural Networks for Forecasting Macroeconomic Time Series: A Re-examination.International Journal of Forecasting,21(4),755-774.
  33. Turner, C.(1996).VaR as an Industrial Tool.Risk,9(3),38-40.
  34. 岑宜潔(2006)。朝陽科技大學財務金融研究所。
  35. 許弘杰(2004)。中山大學財務管理學系研究所。
  36. 陳宏裕(2005)。成功大學財務金融研究所。
  37. 黃珮純(2007)。中原大學國際貿易研究所。