题名

以資料探勘技術建立宅配業之車輛維修及預警決策支援系統

并列篇名

A Vehicular Maintenance and Replacement Decision Support System in Distribution Services: A Data Mining Technique

作者

吳怡瑾(I-Chin Wu);李睿傑(Ruei-Jie Li);陳子立(Tzu-Li Chen)

关键词

關聯規則 ; 資料探勘 ; 決策支援系統 ; 決策樹 ; 車輛預防性更換 ; Association Rule Mining ; Data Mining ; Decision Support System ; Decision Tree ; Vehicular Preventive Replacement

期刊名称

管理與系統

卷期/出版年月

21卷1期(2014 / 01 / 01)

页次

111 - 137

内容语文

繁體中文

中文摘要

物流宅配業隨著消費行為的改變及電子商務的興起正蓬勃的發展,但是當其業績不斷成長之時,人員薪資、車輛運作與維修費用也隨之攀升;因此,如何有效降低車輛相關的營運成本已是物流宅配業者當前之重要課題。研究由物流配送公司中車輛管理人員的角度出發,發展智慧型的車輛零件預防更換及危險車輛預警系統,透過網路平台協助非專業車輛維修技師的車輛管理人員,能輕易的進行預防性維修(preventive maintenance),即在車輛尚未失效前進行預防更換(preventive replacement)或謹慎地依據生產程序進行保養維修。實作上,研究首先透過資料探勘技術之關聯法則及序列型樣分析,找出不同車型維修零件的相關聯性及先後順序,建立預防性維修知識庫以輔助車輛管理人員進行車輛零件預防更換的決策分析。研究更進一步運用歷史維修記錄透過決策樹技術建立一套危險車輛預測模型並進行模型的驗證,研究結果顯示該危險車輛預測模型之平均正確度(accuracy)可以到達96.98%。研究為使車輛零件維修預防更換及危險車輛預測知識與服務能夠不受時間及空間的限制,將建構Web-Based服務平台並利用.Net網頁建構技術建置此系統,讓車輛管理人員能透過平台以獲得即時最佳的車輛保養、零件更換建議與危險車輛預警服務。最後研究模型將落實在個案公司的車輛管理系統中以驗證方法之正確性與系統之可行性。

英文摘要

As e-commerce has grown exponentially, the business of the distribution service is also growing and expanding quickly in recent years. Nevertheless, from the perspective of the merchant, the maintenance, repair and operations (MRO) fees of vehicles in distribution service is also increasing dramatically. In this project, we develop an intelligent maintenance and replacement system to help the manager and technicians conduct preventive maintenance and replacement for vehicles. Practically, we employ association rule mining and sequential pattern mining methods to analyze the relationships and the priorities among vehicles' components to execute preventive maintenance. Furthermore, we employ the decision tree algorithm to predict the vehicles dangerous based on the historical maintenance lists. In this work, we also validate the performance of the construct model which can achieve 96.98% in accuracy rate. Consequently, it can help the manager and technicians to make decisions on either repairing the vehicles or selling them out. For taking the advantage of Web-based Platform, we adopt the .Net technique to develop the intelligent system based on the proposed methods; therefore, employees can access the services anytime-anywhere via the Internet. Finally, we will realize the system in the distributions service to evaluate the accuracy and feasibility of the proposed model and system in the real operation condition.

主题分类 基礎與應用科學 > 統計
社會科學 > 財金及會計學
社會科學 > 管理學
参考文献
  1. Agrawal, R.,Imielinski, T.,Swami, A.(1993).Mining Association Rules between Sets of Items in Large Databases.Proceedings of the ACM SIGMOD International Conference on Management of Data,Washington, D.C.:
  2. Agrawal, R.,Srikant, R.(1995).Mining Sequential Patterns.Proceedings of the International Conference Data Engineering,Taipei, Taiwan:
  3. Agrawal, R.,Srikant, R.(1994).Fast Algorithms for Mining Association Rules.Proceedings of the 20th International Conference on Very Large Data Bases,Santiago de Chile:
  4. Buddhakulsomsiri, J.,Zakaria, A.(2009).Sequential Pattern Mining Algorithm for Automotive Warranty Data.Computers & Industrial Engineering,57(1),137-147.
  5. Chen, M. S.,Han, J.,Yu, P. S.(1996).Data Mining: An Overview from a Database Perspective.IEEE Transactions on Knowledge and Data Engineering,8(6),866-883.
  6. Clifton, R. H.(1974).Principles of Planned Maintenance.London:Edward Arnold.
  7. Edwards, D. J.,Holt, G. D.,Harris, F. C.(1998).Predictive Maintenance Techniques and their Relevance to Construction Plant.Journal of Quality in Maintenance Engineering,4(1),25-37.
  8. Han, J.,Kamber, M.(2006).Data Mining: Concepts and Techniques.San Francisco:Morgan Kaufmann.
  9. Last, M.,Sinaiski, A.,Subramania, H. S.(2010).Predictive Maintenance with Multi-target Classification Models.Proceedings of the Second International Conference on Intelligent Information and Database Systems,Hue City, Vietnam:
  10. Lin, F. R.,Chou, S. C.,Pan, S. M.,Chen, Y. M.(2001).Mining Time Dependency Patterns in Clinical Pathways.International Journal of Medical Informatics,62(1),11-25.
  11. Nemati, H. R.,Steiger, D. M.,Iyer, L. S.,Herschel, R. T.(2002).Knowledge Warehouse: An Architectural Integration of Knowledge Management, Decision Support, Artificial Intelligence and Data Warehousing.Decision Support System,33(2),143-161.
  12. Smith, A. E.,Coit, D. W.,Liang, Y. C.(2010).Neural Network Models to Anticipate Failures of Airport Ground Transportation Vehicle Doors.IEEE Transactions on Automation Science and Engineering (TASE),7(1),183-188.
  13. Srikant, R.,Agrawal, R.(1996).Mining Quantitative Association Rules in Large Relational Tables.Proceedings of the ACM-SIGMOD International Conferences Management of Data,Montreal, Canada:
  14. Turban, E.,Aronson, J. E.,Liang, T. P.(2005).Decision Support Systems and Intelligent Systems.New Jersey:Prentice Hall.
  15. Yam, R. C. M.,Tse, P. W.,Li, L.,Tu, P.(2001).Intelligent Predictive Decision Support System for Condition-based Maintenance.International Journal of Advanced Manufacturing Technology,17(5),383-391.
  16. 王志堅(2008)。碩士論文(碩士論文)。中山大學資訊管理研究所。
  17. 宋建達(2008)。台灣宅配業未來發展趨勢研究。網路社會學通訊,73
  18. 林建煌(2007)。碩士論文(碩士論文)。中央大學高階主管企業管理研究所。
  19. 張紂微、潘宜龍、黃錦祥(2001)。製造業電子化教戰手冊 e-Business-電機電子產業。臺北市:工業局。
  20. 郭家齊(2004)。碩士論文(碩士論文)。雲林科技大學工業工程與管理系。
  21. 陳星壁(2006)。碩士論文(碩士論文)。中華大學資訊工程學系。
  22. 舒毓竾(2004)。碩士論文(碩士論文)。東華大學資訊工程研究所。
  23. 楊玟欣(2007)。透視台灣五大宅配商 購物通路又多又新,宅配業乘勢崛起。財訊月刊,300,250-253。
  24. 廖介銘(2003)。碩士論文(碩士論文)。華梵大學資訊管理學系。
  25. 蔡有藤(1999)。博士論文(博士論文)。國立中央大學機械工程研究所。
  26. 蔡燕純(2004)。碩士論文(碩士論文)。國立中央大學機械工程研究所。
  27. 謝智聿(2002)。碩士論文(碩士論文)。私立逢甲大學資訊工程研究所。
被引用次数
  1. 陳耀斌、陳杏枝、帥嘉珍(2017)。網路算命使用者行為與特徵分析:資料探勘技術之應用。調查研究:方法與應用,37,97-154。