题名

Incorporating Economic Indicators and Competitive Dynamics into the Prediction of 3C Retailing Stores and Online E-Commerce Platforms

并列篇名

整合經濟指標與競爭動態預測3C零售通路與線上電商的營收

DOI

10.29416/JMS.202204_29(2).0006

作者

王志軒(Chih-Hsuan Wang);王蓉萱(Rong-Hsuan Wang)

关键词

Economic Indicators ; Channel Competition ; Sales Forecasting ; 經濟指標 ; 通路競爭 ; 銷售預測

期刊名称

管理與系統

卷期/出版年月

29卷2期(2022 / 04 / 01)

页次

281 - 302

内容语文

英文

中文摘要

To help service companies better forecast sales revenues, this study presents an integrated framework to help firms achieve the following goals: (1) representative and significant economic indicators are identified to predict sales revenues of retailing stores and online e-commerce platforms (predictive dynamics), (2) mutual interactions between a firm and its rivals are captured and incorporated to reveal managerial insights (competitive dynamics), and (3) the impacts of economic indicators and channel competition (retailing vs. online) are provided for industrial practitioners and academic researchers. Experimental results show that three economic indicators, such as unemployment rate, retail index, and wholesale index, are concurrently significant for both retailing stores and online platforms. In particular, support vector regression (SVR) performs the best in predictive dynamics while and vector autoregression (VAR) and Holt-Winters smoothing (HWS) perform the best in competitive dynamics. Managerial insights show the degree of competition between the top two firms is intense: #1 retailer (Tkec) or platform (Momoshop) tend to suffer from the existence of #2 firms (Elife or PChome). In contrast, #3 firms (Sunfar or ETmall) can benefit from the big-scale firms in both 3C retailing (commensalism) or online e-commerce (mutualism). By targeting the niche segments, the small-scale retailer or platform can earn sufficient profit to survive in the market. Not surprisingly, 3C retailing stores (a saturated or declined market) continue to suffer from the existence of online platforms (a growing market).

英文摘要

本研究提出一個整合性的架構幫助服務商預測營收,並達成以下目標:(1)辨識影響3C零售通路(燦坤、全國電子、順發)與線上電商通路(富邦、網家、東森)營收的顯著性經濟指標(預測動態)、(2)具體納入廠商間的互動關係於營收預測(競爭動態)、(3)讓實務從業者與學術研究者能更清楚釐清經濟指標與競爭動態的管理意涵。研究結果顯示,失業率、零售指標、躉售指標同時影響3C零售通路與線上電商的營收。在預測動態中,以支援向量迴歸(SVR)的表現最佳,而在競爭動態中,則三次指數平滑法(HWS)與向量自回歸(VAR)表現較好。在管理意涵部分,研究顯示零售通路燦坤(#1)受到全國電子(#2)的威脅片害而順發(#3)卻從兩家零售商獲得片利;電商部分則由網家(#2)補食富邦購物(#1),東森則與其他電商維持互利狀態。最後,研究也顯示實體通路商持續遭受線上電商的片害侵蝕而讓營收獲利停滯不前。從市場競爭強度來看,不論實體3C通路(飽和市場)或線上電商通路(成長市場),前兩名廠商間的競爭不但激烈且對市場領導者不利,第三名的廠商只要差異化定位於利基市場,反而能持續生存且獲利。

主题分类 基礎與應用科學 > 統計
社會科學 > 財金及會計學
社會科學 > 管理學
参考文献
  1. Al-Musaylh, M. S.,Deo, R. C.,Adamowski, J. F.,Li, Y.(2018).Short-term Electricity Demand Forecasting with MARS, SVR and ARIMA Models Using Aggregated Demand Data in Queensland, Australia.Advanced Engineering Informatics,35,1-16.
  2. Bandara, K.,Shi, P.,Bergmeir, C.,Hewamalage, H.,Tran, Q.,Seaman, B.(2019).Sales Demand Forecast in E-commerce Using A Long Short-term Memory Neural Network Methodology.International Conference on Neural Information Processing
  3. Baumohl, B.(2007).The Secrets of Economic Indicators: Hidden Clues to Future Economic Trends and Investment Opportunities.New York:Pearson.
  4. Ceylan, H.,Ozturk, H.K.(2004).Estimating Energy Demand of Turkey Based on Economic Indicators Using Genetic Algorithm Approach.Energy Conversion and Management,45(15-16),2525-2537.
  5. Chen, Z.,Tian, C.,Zhang, D.(2019).Supply Chains Competition with Vertical and Horizontal Information Sharing.European Journal of Industrial Engineering,13(1),29-53.
  6. Chiang, S. Y.,Wong, G. G.(2011).Competitive Diffusion of Personal Computer Shipments in Taiwan.Technological Forecasting and Social Change,78(3),526-535.
  7. Cho, V.(2001).Tourism Forecasting and Its Relationships with Leading Economic Indicators.Journal of Hospitality & Tourism Research,25(4),399-420.
  8. Choi, S. C.(1991).Price Competition in A Channel Structure with A Common Retailer.Marketing Science,10(4),271-296.
  9. Choi, T. M.,Yu, Y.,Au, K. F.(2011).A Hybrid SARIMA Wavelet Transform Method for Sales Forecasting.Decision Support Systems,51(1),130-140.
  10. Chu, C. W.,Zhang, G. P.(2003).A Comparative Study of Linear and Nonlinear Models for Aggregate Retail Sales Forecasting.International Journal of Production Economics,86(3),217-231.
  11. Clements, M. P.,Galvão, A. B.(2009).Forecasting US Output Growth Using Leading Indicators: An Appraisal Using MIDAS Models.Journal of Applied Econometrics,24(7),1187-1206.
  12. Coughlan, A. T.(1985).Competition and Cooperation in Marketing Channel Choice: Theory and Application.Marketing Science,4(2),110-129.
  13. Görsch, D.,Pedersen, M. K.(2000).eChannel Competition: A Strategic Approach to Electronic Commerce.ECIS 2000 Proceedings
  14. Granger, C. W. J.(1969).Investigating Causal Relations by Econometric Models and Cross-spectral Methods.Econometrica,37(3),424-438.
  15. Griliches, Z.(1998).Patent Statistics as Economic Indicators: A Survey in R&D and Productivity: The Econometric Evidence.University of Chicago Press.
  16. Haykin, S.(2008).Neural Networks and Learning Machines.New York:Pearson.
  17. Hua, G. B.(1996).Residential Construction Demand Forecasting Using Economic Indicators: A Comparative Study of Artificial Neural Networks and Multiple Regression.Construction Management and Economics,14,25-34.
  18. Hung, H. C.,Chiu, Y. C.,Wu, M. C.(2017).An Enhanced Application of Lotka-Volterra Model to Forecast the Sales of Two Competing Retail Formats.Computers & Industrial Engineering,109,325-334.
  19. Hung, H. C.,Tsai, Y. S.,Wu, M. C.(2014).A Modified Lotka-Volterra Model for Competition Forecasting in Taiwan’s Retail Industry.Computers & Industrial Engineering,77,70-79.
  20. Kecman, V.(2001).Learning and Soft Computing-support Vector Machines, Neural Network, and Fuzzy Logic Models.Cambridge, MA:The MIT press.
  21. Kreng, V. B.,Wang, T. C.,Wang, H. T.(2012).Tripartite Dynamic Competition and Equilibrium Analysis on Global Television Market.Computers & Industrial Engineering,63(1),75-81.
  22. Lin, C. J.,Lee, T. S.(2013).Tourism Demand Forecasting: Econometric Model Based on Multivariate Adaptive Regression Splines, Artificial Neural Network and Support Vector Regression.Advances in Management and Applied Economics,3(6)
  23. Lu, C. J.,Lee, T. S.,Lian, C. M.(2010).Sales Forecasting of IT Products Using A Hybrid MARS and SVR Model.IEEE International Conference on Data Mining Workshops
  24. McLaren, N.,Shanbhogue, R.(2011).Using Internet Search Data as Economic Indicators.Bank of England Quarterly Bulletin
  25. Naseri, M. B.,Elliott, G.(2013).The Diffusion of Online Shopping in Australia: Comparing the Bass, Logistic and Gompertz Growth Models.Journal of Marketing Analytics,1(1),49-60.
  26. Qi, Y.,Li, C.,Deng, H.,Cai, M.,Qi, Y.,Deng, Y.(2019).A Deep Neural Framework for Sales Forecasting in E-Commerce.Proceedings of the 28th ACM International Conference on Information and Knowledge Management
  27. Russell, S.,Norvig, P.(2009).Artificial Intelligence: A Modern Approach.New York:Pearson.
  28. Schölkopf, B.,Smola, A. J.(2002).Learning with Kernels, Support Vector Machines, Regularization, Optimization, and Beyond.Cambridge, MA:The MIT Press.
  29. Sims, C. A.(1980).Macroeconomics and Reality.Econometrica: Journal of The Econometric Society,1-48.
  30. Stock, J. H.,Watson, M. W.(1989).New Indexes of Coincident and Leading Economic Indicators.NBER Macroeconomics Annual,4,351-394.
  31. Sun, Z. L.,Choi, T. M.,Au, K. F.,Yu, Y.(2008).Sales Forecasting Using Extreme Learning Machine with Applications in Fashion Retail.Decision Support Systems,46(1),411-419.
  32. Tan, P. N.,Steinbach, M.,Kumar, V.(2010).Introduction to Data Mining.Pearson.
  33. Thomassey, S.(2010).Sales Forecasts in Clothing Industry: The Key Success Factor of the Supply Chain Management.International Journal of Production Economics,128(2),470-483.
  34. Tirole, J.(1991).The Theory of Industrial Organization.New York:The MIT Press.
  35. Tsai, B. H.,Li, Y.,Lee, G. H.(2010).Forecasting Global Adoption of Crystal Display Televisions with Modified Product Diffusion Model.Computers & Industrial Engineering,58(4),553-562.
  36. Wang, X.,Ng, C. T.(2018).New Retail Versus Traditional Retail in E-commerce: Channel Establishment, Price Competition, and Consumer Recognition.Annals of Operations Research
  37. Wong, W. K.,Guo, Z. X.(2010).A Hybrid Intelligent Model for Medium-term Sales Forecasting in Fashion Retail Supply Chains Using Extreme Learning Machine and Harmony Search Algorithm.International Journal of Production Economy,128,614-625.
  38. Worrell, E.,Price, L.,Martin, N.,Farla, J.,Schaeffer, R.(1997).Energy Intensity in the Iron and Steel Industry: A Comparison of Physical and Economic Indicators.Energy Policy,25(7-9),727-744.
  39. Xia, M.,Zhang, Y.,Weng, L.,Ye, X.(2012).Fashion Retail Forecasting Based on Extreme Learning Machine with Adaptive Metrics of Inputs.Knowledge-Based Systems,36,253-259.
  40. Yuan, X.,Li, L.,Wang, Y.(2020).Nonlinear Dynamic Soft Sensor Modeling with Supervised Long Short-term Memory Network.IEEE Transactions on Industrial Informatics,16(5),3168-3176.